Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the complement of [tex]\(\cot 30^\circ\)[/tex], let's follow these steps:
1. Understand the Relationship Between Tangent and Cotangent:
Cotangent ([tex]\(\cot\)[/tex]) is the reciprocal of the tangent ([tex]\(\tan\)[/tex]). In trigonometric terms, [tex]\(\cot(\theta) = \frac{1}{\tan(\theta)}\)[/tex].
2. Identify the Given Angle:
The given angle is [tex]\(30^\circ\)[/tex].
3. Find the Complementary Angle:
The complement of an angle [tex]\( \theta \)[/tex] is [tex]\(90^\circ - \theta\)[/tex]. Thus, the complement of [tex]\(30^\circ\)[/tex] is:
[tex]\[ 90^\circ - 30^\circ = 60^\circ \][/tex]
4. Determine the Tangent of the Complementary Angle:
We need to find [tex]\(\tan(60^\circ)\)[/tex]. According to trigonometric identities and values:
[tex]\(\tan(60^\circ)\)[/tex] is a well-known value:
[tex]\[ \tan(60^\circ) = \sqrt{3} \approx 1.7320508075688767 \][/tex]
Therefore, the complement of [tex]\(\cot 30^\circ\)[/tex] is [tex]\(\tan 60^\circ\)[/tex], and the steps lead us to the final answer:
- The complementary angle of [tex]\(30^\circ\)[/tex] is [tex]\(60^\circ\)[/tex].
- The value of [tex]\(\tan 60^\circ\)[/tex] is approximately [tex]\(1.7320508075688767\)[/tex].
So, the complement of [tex]\(\cot 30^\circ\)[/tex] is:
[tex]\[ 60^\circ \quad \text{and} \quad 1.7320508075688767 \][/tex]
1. Understand the Relationship Between Tangent and Cotangent:
Cotangent ([tex]\(\cot\)[/tex]) is the reciprocal of the tangent ([tex]\(\tan\)[/tex]). In trigonometric terms, [tex]\(\cot(\theta) = \frac{1}{\tan(\theta)}\)[/tex].
2. Identify the Given Angle:
The given angle is [tex]\(30^\circ\)[/tex].
3. Find the Complementary Angle:
The complement of an angle [tex]\( \theta \)[/tex] is [tex]\(90^\circ - \theta\)[/tex]. Thus, the complement of [tex]\(30^\circ\)[/tex] is:
[tex]\[ 90^\circ - 30^\circ = 60^\circ \][/tex]
4. Determine the Tangent of the Complementary Angle:
We need to find [tex]\(\tan(60^\circ)\)[/tex]. According to trigonometric identities and values:
[tex]\(\tan(60^\circ)\)[/tex] is a well-known value:
[tex]\[ \tan(60^\circ) = \sqrt{3} \approx 1.7320508075688767 \][/tex]
Therefore, the complement of [tex]\(\cot 30^\circ\)[/tex] is [tex]\(\tan 60^\circ\)[/tex], and the steps lead us to the final answer:
- The complementary angle of [tex]\(30^\circ\)[/tex] is [tex]\(60^\circ\)[/tex].
- The value of [tex]\(\tan 60^\circ\)[/tex] is approximately [tex]\(1.7320508075688767\)[/tex].
So, the complement of [tex]\(\cot 30^\circ\)[/tex] is:
[tex]\[ 60^\circ \quad \text{and} \quad 1.7320508075688767 \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.