At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Sure, let's evaluate the given integrals step-by-step.
### (a) [tex]\(\int \cos^3 \theta \, d\theta\)[/tex]
To begin, we need to express [tex]\(\cos^3 \theta\)[/tex] in a form that is easier to integrate. We can use the trigonometric identity:
[tex]\[ \cos^3 \theta = \cos \theta \cdot \cos^2 \theta \][/tex]
and we can rewrite [tex]\(\cos^2 \theta\)[/tex] using the identity [tex]\(\cos^2 \theta = 1 - \sin^2 \theta\)[/tex]:
[tex]\[ \cos^3 \theta = \cos \theta \cdot (1 - \sin^2 \theta) = \cos \theta - \cos \theta \cdot \sin^2 \theta \][/tex]
Now, we can break this into two separate integrals:
[tex]\[ \int \cos^3 \theta \, d\theta = \int (\cos \theta - \cos \theta \cdot \sin^2 \theta) \, d\theta \][/tex]
We can split the integral:
[tex]\[ \int \cos^3 \theta \, d\theta = \int \cos \theta \, d\theta - \int \cos \theta \cdot \sin^2 \theta \, d\theta \][/tex]
The first integral is straightforward:
[tex]\[ \int \cos \theta \, d\theta = \sin \theta \][/tex]
For the second integral, let's use the substitution [tex]\( u = \sin \theta \)[/tex]. Then [tex]\( du = \cos \theta \, d\theta \)[/tex]:
[tex]\[ \int \cos \theta \cdot \sin^2 \theta \, d\theta = \int \sin^2 \theta \, du = \int u^2 \, du \][/tex]
Integrating [tex]\( u^2 \)[/tex]:
[tex]\[ \int u^2 \, du = \frac{u^3}{3} + C = \frac{\sin^3 \theta}{3} + C \][/tex]
Combining these results, we have:
[tex]\[ \int \cos^3 \theta \, d\theta = \sin \theta - \frac{\sin^3 \theta}{3} + C \][/tex]
So, the result is:
[tex]\[ \int \cos^3 \theta \, d\theta = -\frac{\sin^3 \theta}{3} + \sin \theta + C \][/tex]
### (b) [tex]\(\int \frac{\ln \left(x^2\right)}{x^2} \, dx\)[/tex]
First, simplify the integrand using the property of logarithms:
[tex]\[ \ln(x^2) = 2 \ln(x) \][/tex]
So the integral becomes:
[tex]\[ \int \frac{\ln(x^2)}{x^2} \, dx = \int \frac{2 \ln(x)}{x^2} \, dx = 2 \int \frac{\ln(x)}{x^2} \, dx \][/tex]
Let's use the substitution [tex]\( u = \ln(x) \)[/tex]. Then [tex]\( du = \frac{1}{x} \, dx \)[/tex], which implies [tex]\( dx = x \, du \)[/tex]:
[tex]\[ 2 \int \frac{\ln(x)}{x^2} \, dx = 2 \int \frac{u}{x} \cdot \frac{1}{x} \, dx = 2 \int \frac{u}{x^2} \cdot x \, du = 2 \int \frac{u}{x} \cdot x \, du \][/tex]
Since [tex]\( x \, du = dx \)[/tex], we have:
[tex]\[ 2 \int u \cdot \frac{du}{x} = 2 \int u \cdot \frac{du}{x} \][/tex]
Given [tex]\( x = e^u \)[/tex], we get [tex]\( \frac{du}{x} = e^{-u} \, du \)[/tex]:
[tex]\[ 2 \int u \cdot e^{-u} \, du \][/tex]
Integrate by parts, taking [tex]\( v = u \)[/tex] and [tex]\( dw = e^{-u} \, du \)[/tex]:
[tex]\[ dv = du \text{ and } w = -e^{-u} \][/tex]
Applying the integration by parts formula [tex]\( \int v \, dw = vw - \int w \, dv \)[/tex]:
[tex]\[ 2 \int u \cdot e^{-u} \, du = 2 \left( -u e^{-u} - \int -e^{-u} \, du \right) = 2 \left( -u e^{-u} + e^{-u} \right) = 2 \left( \frac{-\ln(x)}{x} + \frac{1}{x} \right) \][/tex]
So, the integral is:
[tex]\[ \int \frac{\ln(x^2)}{x^2} \, dx = 2 \left( -\frac{\ln(x)}{x} + \frac{1}{x} \right) + C = \frac{-2 \ln(x)}{x} + \frac{2}{x} + C \][/tex]
Thus, the final answer is:
[tex]\[ \int \frac{\ln(x^2)}{x^2} \, dx = -\frac{\ln(x^2)}{x} - \frac{2}{x} + C \][/tex]
### (a) [tex]\(\int \cos^3 \theta \, d\theta\)[/tex]
To begin, we need to express [tex]\(\cos^3 \theta\)[/tex] in a form that is easier to integrate. We can use the trigonometric identity:
[tex]\[ \cos^3 \theta = \cos \theta \cdot \cos^2 \theta \][/tex]
and we can rewrite [tex]\(\cos^2 \theta\)[/tex] using the identity [tex]\(\cos^2 \theta = 1 - \sin^2 \theta\)[/tex]:
[tex]\[ \cos^3 \theta = \cos \theta \cdot (1 - \sin^2 \theta) = \cos \theta - \cos \theta \cdot \sin^2 \theta \][/tex]
Now, we can break this into two separate integrals:
[tex]\[ \int \cos^3 \theta \, d\theta = \int (\cos \theta - \cos \theta \cdot \sin^2 \theta) \, d\theta \][/tex]
We can split the integral:
[tex]\[ \int \cos^3 \theta \, d\theta = \int \cos \theta \, d\theta - \int \cos \theta \cdot \sin^2 \theta \, d\theta \][/tex]
The first integral is straightforward:
[tex]\[ \int \cos \theta \, d\theta = \sin \theta \][/tex]
For the second integral, let's use the substitution [tex]\( u = \sin \theta \)[/tex]. Then [tex]\( du = \cos \theta \, d\theta \)[/tex]:
[tex]\[ \int \cos \theta \cdot \sin^2 \theta \, d\theta = \int \sin^2 \theta \, du = \int u^2 \, du \][/tex]
Integrating [tex]\( u^2 \)[/tex]:
[tex]\[ \int u^2 \, du = \frac{u^3}{3} + C = \frac{\sin^3 \theta}{3} + C \][/tex]
Combining these results, we have:
[tex]\[ \int \cos^3 \theta \, d\theta = \sin \theta - \frac{\sin^3 \theta}{3} + C \][/tex]
So, the result is:
[tex]\[ \int \cos^3 \theta \, d\theta = -\frac{\sin^3 \theta}{3} + \sin \theta + C \][/tex]
### (b) [tex]\(\int \frac{\ln \left(x^2\right)}{x^2} \, dx\)[/tex]
First, simplify the integrand using the property of logarithms:
[tex]\[ \ln(x^2) = 2 \ln(x) \][/tex]
So the integral becomes:
[tex]\[ \int \frac{\ln(x^2)}{x^2} \, dx = \int \frac{2 \ln(x)}{x^2} \, dx = 2 \int \frac{\ln(x)}{x^2} \, dx \][/tex]
Let's use the substitution [tex]\( u = \ln(x) \)[/tex]. Then [tex]\( du = \frac{1}{x} \, dx \)[/tex], which implies [tex]\( dx = x \, du \)[/tex]:
[tex]\[ 2 \int \frac{\ln(x)}{x^2} \, dx = 2 \int \frac{u}{x} \cdot \frac{1}{x} \, dx = 2 \int \frac{u}{x^2} \cdot x \, du = 2 \int \frac{u}{x} \cdot x \, du \][/tex]
Since [tex]\( x \, du = dx \)[/tex], we have:
[tex]\[ 2 \int u \cdot \frac{du}{x} = 2 \int u \cdot \frac{du}{x} \][/tex]
Given [tex]\( x = e^u \)[/tex], we get [tex]\( \frac{du}{x} = e^{-u} \, du \)[/tex]:
[tex]\[ 2 \int u \cdot e^{-u} \, du \][/tex]
Integrate by parts, taking [tex]\( v = u \)[/tex] and [tex]\( dw = e^{-u} \, du \)[/tex]:
[tex]\[ dv = du \text{ and } w = -e^{-u} \][/tex]
Applying the integration by parts formula [tex]\( \int v \, dw = vw - \int w \, dv \)[/tex]:
[tex]\[ 2 \int u \cdot e^{-u} \, du = 2 \left( -u e^{-u} - \int -e^{-u} \, du \right) = 2 \left( -u e^{-u} + e^{-u} \right) = 2 \left( \frac{-\ln(x)}{x} + \frac{1}{x} \right) \][/tex]
So, the integral is:
[tex]\[ \int \frac{\ln(x^2)}{x^2} \, dx = 2 \left( -\frac{\ln(x)}{x} + \frac{1}{x} \right) + C = \frac{-2 \ln(x)}{x} + \frac{2}{x} + C \][/tex]
Thus, the final answer is:
[tex]\[ \int \frac{\ln(x^2)}{x^2} \, dx = -\frac{\ln(x^2)}{x} - \frac{2}{x} + C \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.