Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine which domains provide a real value for the period [tex]\( T \)[/tex] of a pendulum, we need to analyze the given equation:
[tex]\[ T = 2 \pi \sqrt{\frac{L}{g}} \][/tex]
where:
- [tex]\( T \)[/tex] is the period of the pendulum.
- [tex]\( L \)[/tex] is the length of the pendulum.
- [tex]\( g \)[/tex] is the acceleration due to gravity.
For the period [tex]\( T \)[/tex] to be real, the expression inside the square root must be non-negative, because the square root of a negative number is not a real number. Thus, the term [tex]\(\frac{L}{g}\)[/tex] must be non-negative.
Since [tex]\( L \)[/tex] (the length of the pendulum) is always positive, the denominator [tex]\( g \)[/tex] must be positive to ensure that [tex]\(\frac{L}{g} \geq 0\)[/tex].
Let's analyze each case:
1. [tex]\( g < 0 \)[/tex]:
- If [tex]\( g \)[/tex] is negative, then [tex]\(\frac{L}{g}\)[/tex] would be negative.
- A negative value inside the square root results in an imaginary number, not a real number.
- Therefore, [tex]\( T \)[/tex] is not real in this domain.
2. [tex]\( g = 0 \)[/tex]:
- If [tex]\( g \)[/tex] is zero, we would be attempting to divide by zero in [tex]\(\frac{L}{g}\)[/tex], which is undefined in mathematics.
- An undefined expression cannot yield a real value.
- Therefore, [tex]\( T \)[/tex] is not real in this domain.
3. [tex]\( g > 0 \)[/tex]:
- If [tex]\( g \)[/tex] is positive, then [tex]\(\frac{L}{g}\)[/tex] would be positive since [tex]\( L \)[/tex] is also positive.
- The square root of a positive number is a real number.
- Therefore, [tex]\( T \)[/tex] is real in this domain.
4. [tex]\( g \geq 0 \)[/tex]:
- If [tex]\( g \)[/tex] is zero, the expression [tex]\(\frac{L}{0}\)[/tex] becomes undefined, as discussed earlier.
- If [tex]\( g \)[/tex] is positive, then [tex]\(\frac{L}{g}\)[/tex] is positive and results in a real number.
- Since zero cannot be included, this domain as a whole does not guarantee [tex]\( T \)[/tex] being real for all values.
- Therefore, [tex]\( T \)[/tex] is not real in this domain as a whole.
In conclusion, the domain that provides a real value for the period [tex]\( T \)[/tex] of the pendulum is:
[tex]\( g > 0 \)[/tex].
[tex]\[ T = 2 \pi \sqrt{\frac{L}{g}} \][/tex]
where:
- [tex]\( T \)[/tex] is the period of the pendulum.
- [tex]\( L \)[/tex] is the length of the pendulum.
- [tex]\( g \)[/tex] is the acceleration due to gravity.
For the period [tex]\( T \)[/tex] to be real, the expression inside the square root must be non-negative, because the square root of a negative number is not a real number. Thus, the term [tex]\(\frac{L}{g}\)[/tex] must be non-negative.
Since [tex]\( L \)[/tex] (the length of the pendulum) is always positive, the denominator [tex]\( g \)[/tex] must be positive to ensure that [tex]\(\frac{L}{g} \geq 0\)[/tex].
Let's analyze each case:
1. [tex]\( g < 0 \)[/tex]:
- If [tex]\( g \)[/tex] is negative, then [tex]\(\frac{L}{g}\)[/tex] would be negative.
- A negative value inside the square root results in an imaginary number, not a real number.
- Therefore, [tex]\( T \)[/tex] is not real in this domain.
2. [tex]\( g = 0 \)[/tex]:
- If [tex]\( g \)[/tex] is zero, we would be attempting to divide by zero in [tex]\(\frac{L}{g}\)[/tex], which is undefined in mathematics.
- An undefined expression cannot yield a real value.
- Therefore, [tex]\( T \)[/tex] is not real in this domain.
3. [tex]\( g > 0 \)[/tex]:
- If [tex]\( g \)[/tex] is positive, then [tex]\(\frac{L}{g}\)[/tex] would be positive since [tex]\( L \)[/tex] is also positive.
- The square root of a positive number is a real number.
- Therefore, [tex]\( T \)[/tex] is real in this domain.
4. [tex]\( g \geq 0 \)[/tex]:
- If [tex]\( g \)[/tex] is zero, the expression [tex]\(\frac{L}{0}\)[/tex] becomes undefined, as discussed earlier.
- If [tex]\( g \)[/tex] is positive, then [tex]\(\frac{L}{g}\)[/tex] is positive and results in a real number.
- Since zero cannot be included, this domain as a whole does not guarantee [tex]\( T \)[/tex] being real for all values.
- Therefore, [tex]\( T \)[/tex] is not real in this domain as a whole.
In conclusion, the domain that provides a real value for the period [tex]\( T \)[/tex] of the pendulum is:
[tex]\( g > 0 \)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.