Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve this problem, we need to compare the given functions: [tex]\( f(x) = x^2 \)[/tex] and [tex]\( g(x) = \left( \frac{1}{5} x \right)^2 \)[/tex].
1. Understand the function [tex]\( f(x) = x^2 \)[/tex]:
- This is a basic quadratic function with its vertex at the origin [tex]\((0,0)\)[/tex] and opens upwards.
2. Understand the function [tex]\( g(x) \)[/tex]:
- The function is given as [tex]\( g(x) = \left( \frac{1}{5} x \right)^2 \)[/tex].
3. Simplify [tex]\( g(x) \)[/tex]:
- We can rewrite [tex]\( g(x) \)[/tex] to understand its form better.
[tex]\[ g(x) = \left( \frac{1}{5} x \right)^2 = \left( \frac{1}{5} \cdot x \right)^2 = \left( \frac{1}{5} \right)^2 \cdot x^2 = \frac{1}{25} x^2 \][/tex]
4. Compare with the basic function [tex]\( f(x) \)[/tex]:
- The expression [tex]\( g(x) = \frac{1}{25} x^2 \)[/tex] implies that the quadratic function [tex]\( f(x) = x^2 \)[/tex] has been modified by multiplying the input [tex]\( x \)[/tex] by [tex]\( \frac{1}{5} \)[/tex].
5. Transformation analysis:
- When a function [tex]\( f(x) \)[/tex] is transformed to [tex]\( f\left( \frac{1}{k} x \right) \)[/tex], it involves a horizontal stretch or compression.
- Specifically, [tex]\( f\left( \frac{1}{k} x \right) \)[/tex] results in a horizontal stretch of the graph of [tex]\( f(x) \)[/tex] by a factor of [tex]\( k \)[/tex]:
- If [tex]\( k > 1 \)[/tex], the graph is horizontally stretched.
- If [tex]\( 0 < k < 1 \)[/tex], the graph is horizontally compressed.
- In our case, [tex]\( k = 5 \)[/tex] because [tex]\( \frac{1}{5} x \)[/tex] is equivalent to [tex]\( f \left( \frac{1}{5} x \right) \)[/tex], which means a stretch.
6. Conclusion:
- Therefore, the function [tex]\( g(x) = \left( \frac{1}{5} x \right)^2 \)[/tex] results in the graph of [tex]\( f(x) = x^2 \)[/tex] being horizontally stretched by a factor of 5.
Based on the above analysis, the correct multiple-choice answer is:
B. The graph of [tex]\( g(x) \)[/tex] is the graph of [tex]\( f(x) \)[/tex] horizontally stretched by a factor of 5.
1. Understand the function [tex]\( f(x) = x^2 \)[/tex]:
- This is a basic quadratic function with its vertex at the origin [tex]\((0,0)\)[/tex] and opens upwards.
2. Understand the function [tex]\( g(x) \)[/tex]:
- The function is given as [tex]\( g(x) = \left( \frac{1}{5} x \right)^2 \)[/tex].
3. Simplify [tex]\( g(x) \)[/tex]:
- We can rewrite [tex]\( g(x) \)[/tex] to understand its form better.
[tex]\[ g(x) = \left( \frac{1}{5} x \right)^2 = \left( \frac{1}{5} \cdot x \right)^2 = \left( \frac{1}{5} \right)^2 \cdot x^2 = \frac{1}{25} x^2 \][/tex]
4. Compare with the basic function [tex]\( f(x) \)[/tex]:
- The expression [tex]\( g(x) = \frac{1}{25} x^2 \)[/tex] implies that the quadratic function [tex]\( f(x) = x^2 \)[/tex] has been modified by multiplying the input [tex]\( x \)[/tex] by [tex]\( \frac{1}{5} \)[/tex].
5. Transformation analysis:
- When a function [tex]\( f(x) \)[/tex] is transformed to [tex]\( f\left( \frac{1}{k} x \right) \)[/tex], it involves a horizontal stretch or compression.
- Specifically, [tex]\( f\left( \frac{1}{k} x \right) \)[/tex] results in a horizontal stretch of the graph of [tex]\( f(x) \)[/tex] by a factor of [tex]\( k \)[/tex]:
- If [tex]\( k > 1 \)[/tex], the graph is horizontally stretched.
- If [tex]\( 0 < k < 1 \)[/tex], the graph is horizontally compressed.
- In our case, [tex]\( k = 5 \)[/tex] because [tex]\( \frac{1}{5} x \)[/tex] is equivalent to [tex]\( f \left( \frac{1}{5} x \right) \)[/tex], which means a stretch.
6. Conclusion:
- Therefore, the function [tex]\( g(x) = \left( \frac{1}{5} x \right)^2 \)[/tex] results in the graph of [tex]\( f(x) = x^2 \)[/tex] being horizontally stretched by a factor of 5.
Based on the above analysis, the correct multiple-choice answer is:
B. The graph of [tex]\( g(x) \)[/tex] is the graph of [tex]\( f(x) \)[/tex] horizontally stretched by a factor of 5.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.