Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Sure, let's work through the problem step-by-step.
Given sets:
- [tex]\( A = \{36\} \)[/tex]
- [tex]\( B = \{1, 2, 3\} \)[/tex]
Let's find the Cartesian products [tex]\( A \times B \)[/tex] and [tex]\( B \times A \)[/tex].
### a) Cartesian Product [tex]\( A \times B \)[/tex]
The Cartesian product [tex]\( A \times B \)[/tex] is the set of all ordered pairs [tex]\((a, b)\)[/tex] where [tex]\( a \)[/tex] is an element of [tex]\( A \)[/tex] and [tex]\( b \)[/tex] is an element of [tex]\( B \)[/tex].
Since [tex]\( A \)[/tex] contains only one element, 36, we pair it with each of the elements of [tex]\( B \)[/tex]:
1. Pairing 36 (from [tex]\( A \)[/tex]) with 1 (from [tex]\( B \)[/tex]) gives us the ordered pair [tex]\((36, 1)\)[/tex].
2. Pairing 36 (from [tex]\( A \)[/tex]) with 2 (from [tex]\( B \)[/tex]) gives us the ordered pair [tex]\((36, 2)\)[/tex].
3. Pairing 36 (from [tex]\( A \)[/tex]) with 3 (from [tex]\( B \)[/tex]) gives us the ordered pair [tex]\((36, 3)\)[/tex].
Therefore,
[tex]\[ A \times B = \{ (36, 1), (36, 2), (36, 3) \} \][/tex]
### b) Cartesian Product [tex]\( B \times A \)[/tex]
The Cartesian product [tex]\( B \times A \)[/tex] is the set of all ordered pairs [tex]\((b, a)\)[/tex] where [tex]\( b \)[/tex] is an element of [tex]\( B \)[/tex] and [tex]\( a \)[/tex] is an element of [tex]\( A \)[/tex].
Since [tex]\( A \)[/tex] contains only one element, 36, we pair each element of [tex]\( B \)[/tex] with 36 from [tex]\( A \)[/tex]:
1. Pairing 1 (from [tex]\( B \)[/tex]) with 36 (from [tex]\( A \)[/tex]) gives us the ordered pair [tex]\((1, 36)\)[/tex].
2. Pairing 2 (from [tex]\( B \)[/tex]) with 36 (from [tex]\( A \)[/tex]) gives us the ordered pair [tex]\((2, 36)\)[/tex].
3. Pairing 3 (from [tex]\( B \)[/tex]) with 36 (from [tex]\( A \)[/tex]) gives us the ordered pair [tex]\((3, 36)\)[/tex].
Therefore,
[tex]\[ B \times A = \{ (1, 36), (2, 36), (3, 36) \} \][/tex]
### Representing on the Cartesian Plane:
For part a) [tex]\( A \times B \)[/tex]:
- Points on Cartesian Plane: (36, 1), (36, 2), (36, 3)
For part b) [tex]\( B \times A \)[/tex]:
- Points on Cartesian Plane: (1, 36), (2, 36), (3, 36)
These ordered pairs are the coordinates that will be plotted on the Cartesian plane for each respective product.
Given sets:
- [tex]\( A = \{36\} \)[/tex]
- [tex]\( B = \{1, 2, 3\} \)[/tex]
Let's find the Cartesian products [tex]\( A \times B \)[/tex] and [tex]\( B \times A \)[/tex].
### a) Cartesian Product [tex]\( A \times B \)[/tex]
The Cartesian product [tex]\( A \times B \)[/tex] is the set of all ordered pairs [tex]\((a, b)\)[/tex] where [tex]\( a \)[/tex] is an element of [tex]\( A \)[/tex] and [tex]\( b \)[/tex] is an element of [tex]\( B \)[/tex].
Since [tex]\( A \)[/tex] contains only one element, 36, we pair it with each of the elements of [tex]\( B \)[/tex]:
1. Pairing 36 (from [tex]\( A \)[/tex]) with 1 (from [tex]\( B \)[/tex]) gives us the ordered pair [tex]\((36, 1)\)[/tex].
2. Pairing 36 (from [tex]\( A \)[/tex]) with 2 (from [tex]\( B \)[/tex]) gives us the ordered pair [tex]\((36, 2)\)[/tex].
3. Pairing 36 (from [tex]\( A \)[/tex]) with 3 (from [tex]\( B \)[/tex]) gives us the ordered pair [tex]\((36, 3)\)[/tex].
Therefore,
[tex]\[ A \times B = \{ (36, 1), (36, 2), (36, 3) \} \][/tex]
### b) Cartesian Product [tex]\( B \times A \)[/tex]
The Cartesian product [tex]\( B \times A \)[/tex] is the set of all ordered pairs [tex]\((b, a)\)[/tex] where [tex]\( b \)[/tex] is an element of [tex]\( B \)[/tex] and [tex]\( a \)[/tex] is an element of [tex]\( A \)[/tex].
Since [tex]\( A \)[/tex] contains only one element, 36, we pair each element of [tex]\( B \)[/tex] with 36 from [tex]\( A \)[/tex]:
1. Pairing 1 (from [tex]\( B \)[/tex]) with 36 (from [tex]\( A \)[/tex]) gives us the ordered pair [tex]\((1, 36)\)[/tex].
2. Pairing 2 (from [tex]\( B \)[/tex]) with 36 (from [tex]\( A \)[/tex]) gives us the ordered pair [tex]\((2, 36)\)[/tex].
3. Pairing 3 (from [tex]\( B \)[/tex]) with 36 (from [tex]\( A \)[/tex]) gives us the ordered pair [tex]\((3, 36)\)[/tex].
Therefore,
[tex]\[ B \times A = \{ (1, 36), (2, 36), (3, 36) \} \][/tex]
### Representing on the Cartesian Plane:
For part a) [tex]\( A \times B \)[/tex]:
- Points on Cartesian Plane: (36, 1), (36, 2), (36, 3)
For part b) [tex]\( B \times A \)[/tex]:
- Points on Cartesian Plane: (1, 36), (2, 36), (3, 36)
These ordered pairs are the coordinates that will be plotted on the Cartesian plane for each respective product.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.