Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure, let's work through the problem step-by-step.
Given sets:
- [tex]\( A = \{36\} \)[/tex]
- [tex]\( B = \{1, 2, 3\} \)[/tex]
Let's find the Cartesian products [tex]\( A \times B \)[/tex] and [tex]\( B \times A \)[/tex].
### a) Cartesian Product [tex]\( A \times B \)[/tex]
The Cartesian product [tex]\( A \times B \)[/tex] is the set of all ordered pairs [tex]\((a, b)\)[/tex] where [tex]\( a \)[/tex] is an element of [tex]\( A \)[/tex] and [tex]\( b \)[/tex] is an element of [tex]\( B \)[/tex].
Since [tex]\( A \)[/tex] contains only one element, 36, we pair it with each of the elements of [tex]\( B \)[/tex]:
1. Pairing 36 (from [tex]\( A \)[/tex]) with 1 (from [tex]\( B \)[/tex]) gives us the ordered pair [tex]\((36, 1)\)[/tex].
2. Pairing 36 (from [tex]\( A \)[/tex]) with 2 (from [tex]\( B \)[/tex]) gives us the ordered pair [tex]\((36, 2)\)[/tex].
3. Pairing 36 (from [tex]\( A \)[/tex]) with 3 (from [tex]\( B \)[/tex]) gives us the ordered pair [tex]\((36, 3)\)[/tex].
Therefore,
[tex]\[ A \times B = \{ (36, 1), (36, 2), (36, 3) \} \][/tex]
### b) Cartesian Product [tex]\( B \times A \)[/tex]
The Cartesian product [tex]\( B \times A \)[/tex] is the set of all ordered pairs [tex]\((b, a)\)[/tex] where [tex]\( b \)[/tex] is an element of [tex]\( B \)[/tex] and [tex]\( a \)[/tex] is an element of [tex]\( A \)[/tex].
Since [tex]\( A \)[/tex] contains only one element, 36, we pair each element of [tex]\( B \)[/tex] with 36 from [tex]\( A \)[/tex]:
1. Pairing 1 (from [tex]\( B \)[/tex]) with 36 (from [tex]\( A \)[/tex]) gives us the ordered pair [tex]\((1, 36)\)[/tex].
2. Pairing 2 (from [tex]\( B \)[/tex]) with 36 (from [tex]\( A \)[/tex]) gives us the ordered pair [tex]\((2, 36)\)[/tex].
3. Pairing 3 (from [tex]\( B \)[/tex]) with 36 (from [tex]\( A \)[/tex]) gives us the ordered pair [tex]\((3, 36)\)[/tex].
Therefore,
[tex]\[ B \times A = \{ (1, 36), (2, 36), (3, 36) \} \][/tex]
### Representing on the Cartesian Plane:
For part a) [tex]\( A \times B \)[/tex]:
- Points on Cartesian Plane: (36, 1), (36, 2), (36, 3)
For part b) [tex]\( B \times A \)[/tex]:
- Points on Cartesian Plane: (1, 36), (2, 36), (3, 36)
These ordered pairs are the coordinates that will be plotted on the Cartesian plane for each respective product.
Given sets:
- [tex]\( A = \{36\} \)[/tex]
- [tex]\( B = \{1, 2, 3\} \)[/tex]
Let's find the Cartesian products [tex]\( A \times B \)[/tex] and [tex]\( B \times A \)[/tex].
### a) Cartesian Product [tex]\( A \times B \)[/tex]
The Cartesian product [tex]\( A \times B \)[/tex] is the set of all ordered pairs [tex]\((a, b)\)[/tex] where [tex]\( a \)[/tex] is an element of [tex]\( A \)[/tex] and [tex]\( b \)[/tex] is an element of [tex]\( B \)[/tex].
Since [tex]\( A \)[/tex] contains only one element, 36, we pair it with each of the elements of [tex]\( B \)[/tex]:
1. Pairing 36 (from [tex]\( A \)[/tex]) with 1 (from [tex]\( B \)[/tex]) gives us the ordered pair [tex]\((36, 1)\)[/tex].
2. Pairing 36 (from [tex]\( A \)[/tex]) with 2 (from [tex]\( B \)[/tex]) gives us the ordered pair [tex]\((36, 2)\)[/tex].
3. Pairing 36 (from [tex]\( A \)[/tex]) with 3 (from [tex]\( B \)[/tex]) gives us the ordered pair [tex]\((36, 3)\)[/tex].
Therefore,
[tex]\[ A \times B = \{ (36, 1), (36, 2), (36, 3) \} \][/tex]
### b) Cartesian Product [tex]\( B \times A \)[/tex]
The Cartesian product [tex]\( B \times A \)[/tex] is the set of all ordered pairs [tex]\((b, a)\)[/tex] where [tex]\( b \)[/tex] is an element of [tex]\( B \)[/tex] and [tex]\( a \)[/tex] is an element of [tex]\( A \)[/tex].
Since [tex]\( A \)[/tex] contains only one element, 36, we pair each element of [tex]\( B \)[/tex] with 36 from [tex]\( A \)[/tex]:
1. Pairing 1 (from [tex]\( B \)[/tex]) with 36 (from [tex]\( A \)[/tex]) gives us the ordered pair [tex]\((1, 36)\)[/tex].
2. Pairing 2 (from [tex]\( B \)[/tex]) with 36 (from [tex]\( A \)[/tex]) gives us the ordered pair [tex]\((2, 36)\)[/tex].
3. Pairing 3 (from [tex]\( B \)[/tex]) with 36 (from [tex]\( A \)[/tex]) gives us the ordered pair [tex]\((3, 36)\)[/tex].
Therefore,
[tex]\[ B \times A = \{ (1, 36), (2, 36), (3, 36) \} \][/tex]
### Representing on the Cartesian Plane:
For part a) [tex]\( A \times B \)[/tex]:
- Points on Cartesian Plane: (36, 1), (36, 2), (36, 3)
For part b) [tex]\( B \times A \)[/tex]:
- Points on Cartesian Plane: (1, 36), (2, 36), (3, 36)
These ordered pairs are the coordinates that will be plotted on the Cartesian plane for each respective product.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.