Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve the quadratic equation [tex]\( x^2 + 9x - 9 = 0 \)[/tex] and express the solution in the form [tex]\( \frac{-9 \pm \sqrt{r}}{2} \)[/tex], we'll need to determine the value of [tex]\( r \)[/tex], where [tex]\( r \)[/tex] is the discriminant of the quadratic equation.
Given a quadratic equation in the standard form [tex]\( ax^2 + bx + c = 0 \)[/tex], the solution is derived using the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
In this case, the coefficients are:
[tex]\[ a = 1, \; b = 9, \; c = -9 \][/tex]
The discriminant [tex]\( \Delta \)[/tex] is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] into the discriminant formula:
[tex]\[ \Delta = 9^2 - 4 \cdot 1 \cdot (-9) \][/tex]
[tex]\[ \Delta = 81 + 36 \][/tex]
[tex]\[ \Delta = 117 \][/tex]
Therefore, in the expression [tex]\( \frac{-9 \pm \sqrt{r}}{2} \)[/tex], the value of [tex]\( r \)[/tex] is:
[tex]\[ r = 117 \][/tex]
So, the correct answer is:
[tex]\[ \boxed{117} \][/tex]
Given a quadratic equation in the standard form [tex]\( ax^2 + bx + c = 0 \)[/tex], the solution is derived using the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
In this case, the coefficients are:
[tex]\[ a = 1, \; b = 9, \; c = -9 \][/tex]
The discriminant [tex]\( \Delta \)[/tex] is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] into the discriminant formula:
[tex]\[ \Delta = 9^2 - 4 \cdot 1 \cdot (-9) \][/tex]
[tex]\[ \Delta = 81 + 36 \][/tex]
[tex]\[ \Delta = 117 \][/tex]
Therefore, in the expression [tex]\( \frac{-9 \pm \sqrt{r}}{2} \)[/tex], the value of [tex]\( r \)[/tex] is:
[tex]\[ r = 117 \][/tex]
So, the correct answer is:
[tex]\[ \boxed{117} \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.