Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Let's evaluate the two given integrals step-by-step.
### Part (a): [tex]\( \int \sqrt{4-x^2} \, dx \)[/tex]
To evaluate the integral [tex]\( \int \sqrt{4-x^2} \, dx \)[/tex], we can use a trigonometric substitution. Here, we notice that the integrand involves a square root of the form [tex]\( \sqrt{a^2 - x^2} \)[/tex] which suggests a trigonometric substitution.
1. Substitution:
Let [tex]\( x = 2 \sin \theta \)[/tex]. Then, [tex]\( dx = 2 \cos \theta \, d\theta \)[/tex].
2. Rewrite the Integral:
Substitute [tex]\( x = 2 \sin \theta \)[/tex] into the integral:
[tex]\[ \int \sqrt{4 - x^2} \, dx = \int \sqrt{4 - (2\sin \theta)^2} \cdot 2 \cos \theta \, d\theta = \int \sqrt{4 - 4\sin^2 \theta} \cdot 2 \cos \theta \, d\theta \][/tex]
Simplify the square root:
[tex]\[ \sqrt{4 - 4\sin^2 \theta} = \sqrt{4(1 - \sin^2 \theta)} = \sqrt{4 \cos^2 \theta} = 2 \cos \theta \][/tex]
Thus, the integral becomes:
[tex]\[ \int 2 \cos \theta \cdot 2 \cos \theta \, d\theta = \int 4 \cos^2 \theta \, d\theta \][/tex]
3. Simplify Using a Trigonometric Identity:
Use the double-angle identity: [tex]\( \cos^2 \theta = \frac{1 + \cos(2\theta)}{2} \)[/tex]:
[tex]\[ \int 4 \cos^2 \theta \, d\theta = \int 4 \left( \frac{1 + \cos(2\theta)}{2} \right) d\theta = \int (2 + 2 \cos(2\theta)) \, d\theta \][/tex]
4. Integrate:
[tex]\[ \int 2 \, d\theta + \int 2 \cos(2\theta) \, d\theta \][/tex]
The integral of the first term is straightforward:
[tex]\[ \int 2 \, d\theta = 2\theta \][/tex]
For the second term, use the substitution [tex]\( u = 2\theta \)[/tex], [tex]\( du = 2 \, d\theta \)[/tex] i.e. [tex]\( d\theta = \frac{du}{2} \)[/tex]:
[tex]\[ \int 2 \cos(2\theta) \, d\theta = \int 2 \cos u \cdot \frac{du}{2} = \int \cos u \, du = \sin u \][/tex]
Substitute back [tex]\( u = 2\theta \)[/tex]:
[tex]\[ \sin(2\theta) \][/tex]
So, combining the results:
[tex]\[ \int \sqrt{4-x^2} \, dx = 2\theta + \sin(2\theta) + C \][/tex]
5. Substitute Back [tex]\( \theta \)[/tex]:
Recall [tex]\( x = 2 \sin \theta \)[/tex], thus [tex]\( \theta = \sin^{-1}\left(\frac{x}{2}\right) \)[/tex]:
[tex]\[ \sin(2\theta) = 2\sin \theta \cos \theta = 2 \left(\frac{x}{2}\right) \sqrt{1 - \left(\frac{x}{2}\right)^2} = x \sqrt{1 - \frac{x^2}{4}} = \frac{x \sqrt{4 - x^2}}{2} \][/tex]
Therefore:
[tex]\[ 2\theta = 2 \sin^{-1}\left(\frac{x}{2}\right) \][/tex]
Substitute these back:
[tex]\[ 2 \sin^{-1}\left(\frac{x}{2}\right) + \frac{x \sqrt{4 - x^2}}{2} + C \][/tex]
Thus, the evaluated integral in Part (a) is:
[tex]\[ \int \sqrt{4-x^2} \, dx = \frac{x\sqrt{4 - x^2}}{2} + 2 \sin^{-1}\left(\frac{x}{2}\right) + C \][/tex]
### Part (b): [tex]\( \int (1 + \tan x) \cos x \, dx \)[/tex]
To evaluate [tex]\( \int(1 + \tan x) \cos x \, dx \)[/tex]:
1. Distribute [tex]\( \cos x \)[/tex]:
[tex]\[ \int (1 + \tan x) \cos x \, dx = \int \cos x \, dx + \int \tan x \cos x \, dx \][/tex]
2. Evaluate Each Integral:
- The first integral is straightforward:
[tex]\[ \int \cos x \, dx = \sin x \][/tex]
- For the second integral, note that [tex]\( \tan x = \frac{\sin x}{\cos x} \)[/tex]:
[tex]\[ \int \tan x \cos x \, dx = \int \sin x \, dx = -\cos x \][/tex]
3. Combine the Results:
[tex]\[ \sin x - \cos x + C \][/tex]
Thus, the evaluated integral in Part (b) is:
[tex]\[ \int (1 + \tan x) \cos x \, dx = \sin x - \cos x + C \][/tex]
So the final answers are:
- (a): [tex]\(\int \sqrt{4-x^2} \, dx = \frac{x \sqrt{4-x^2}}{2} + 2 \sin^{-1}\left(\frac{x}{2}\right) + C\)[/tex]
- (b): [tex]\(\int (1+\tan x) \cos x \, dx = \sin x - \cos x + C\)[/tex]
### Part (a): [tex]\( \int \sqrt{4-x^2} \, dx \)[/tex]
To evaluate the integral [tex]\( \int \sqrt{4-x^2} \, dx \)[/tex], we can use a trigonometric substitution. Here, we notice that the integrand involves a square root of the form [tex]\( \sqrt{a^2 - x^2} \)[/tex] which suggests a trigonometric substitution.
1. Substitution:
Let [tex]\( x = 2 \sin \theta \)[/tex]. Then, [tex]\( dx = 2 \cos \theta \, d\theta \)[/tex].
2. Rewrite the Integral:
Substitute [tex]\( x = 2 \sin \theta \)[/tex] into the integral:
[tex]\[ \int \sqrt{4 - x^2} \, dx = \int \sqrt{4 - (2\sin \theta)^2} \cdot 2 \cos \theta \, d\theta = \int \sqrt{4 - 4\sin^2 \theta} \cdot 2 \cos \theta \, d\theta \][/tex]
Simplify the square root:
[tex]\[ \sqrt{4 - 4\sin^2 \theta} = \sqrt{4(1 - \sin^2 \theta)} = \sqrt{4 \cos^2 \theta} = 2 \cos \theta \][/tex]
Thus, the integral becomes:
[tex]\[ \int 2 \cos \theta \cdot 2 \cos \theta \, d\theta = \int 4 \cos^2 \theta \, d\theta \][/tex]
3. Simplify Using a Trigonometric Identity:
Use the double-angle identity: [tex]\( \cos^2 \theta = \frac{1 + \cos(2\theta)}{2} \)[/tex]:
[tex]\[ \int 4 \cos^2 \theta \, d\theta = \int 4 \left( \frac{1 + \cos(2\theta)}{2} \right) d\theta = \int (2 + 2 \cos(2\theta)) \, d\theta \][/tex]
4. Integrate:
[tex]\[ \int 2 \, d\theta + \int 2 \cos(2\theta) \, d\theta \][/tex]
The integral of the first term is straightforward:
[tex]\[ \int 2 \, d\theta = 2\theta \][/tex]
For the second term, use the substitution [tex]\( u = 2\theta \)[/tex], [tex]\( du = 2 \, d\theta \)[/tex] i.e. [tex]\( d\theta = \frac{du}{2} \)[/tex]:
[tex]\[ \int 2 \cos(2\theta) \, d\theta = \int 2 \cos u \cdot \frac{du}{2} = \int \cos u \, du = \sin u \][/tex]
Substitute back [tex]\( u = 2\theta \)[/tex]:
[tex]\[ \sin(2\theta) \][/tex]
So, combining the results:
[tex]\[ \int \sqrt{4-x^2} \, dx = 2\theta + \sin(2\theta) + C \][/tex]
5. Substitute Back [tex]\( \theta \)[/tex]:
Recall [tex]\( x = 2 \sin \theta \)[/tex], thus [tex]\( \theta = \sin^{-1}\left(\frac{x}{2}\right) \)[/tex]:
[tex]\[ \sin(2\theta) = 2\sin \theta \cos \theta = 2 \left(\frac{x}{2}\right) \sqrt{1 - \left(\frac{x}{2}\right)^2} = x \sqrt{1 - \frac{x^2}{4}} = \frac{x \sqrt{4 - x^2}}{2} \][/tex]
Therefore:
[tex]\[ 2\theta = 2 \sin^{-1}\left(\frac{x}{2}\right) \][/tex]
Substitute these back:
[tex]\[ 2 \sin^{-1}\left(\frac{x}{2}\right) + \frac{x \sqrt{4 - x^2}}{2} + C \][/tex]
Thus, the evaluated integral in Part (a) is:
[tex]\[ \int \sqrt{4-x^2} \, dx = \frac{x\sqrt{4 - x^2}}{2} + 2 \sin^{-1}\left(\frac{x}{2}\right) + C \][/tex]
### Part (b): [tex]\( \int (1 + \tan x) \cos x \, dx \)[/tex]
To evaluate [tex]\( \int(1 + \tan x) \cos x \, dx \)[/tex]:
1. Distribute [tex]\( \cos x \)[/tex]:
[tex]\[ \int (1 + \tan x) \cos x \, dx = \int \cos x \, dx + \int \tan x \cos x \, dx \][/tex]
2. Evaluate Each Integral:
- The first integral is straightforward:
[tex]\[ \int \cos x \, dx = \sin x \][/tex]
- For the second integral, note that [tex]\( \tan x = \frac{\sin x}{\cos x} \)[/tex]:
[tex]\[ \int \tan x \cos x \, dx = \int \sin x \, dx = -\cos x \][/tex]
3. Combine the Results:
[tex]\[ \sin x - \cos x + C \][/tex]
Thus, the evaluated integral in Part (b) is:
[tex]\[ \int (1 + \tan x) \cos x \, dx = \sin x - \cos x + C \][/tex]
So the final answers are:
- (a): [tex]\(\int \sqrt{4-x^2} \, dx = \frac{x \sqrt{4-x^2}}{2} + 2 \sin^{-1}\left(\frac{x}{2}\right) + C\)[/tex]
- (b): [tex]\(\int (1+\tan x) \cos x \, dx = \sin x - \cos x + C\)[/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.