Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's evaluate the two given integrals step-by-step.
### Part (a): [tex]\( \int \sqrt{4-x^2} \, dx \)[/tex]
To evaluate the integral [tex]\( \int \sqrt{4-x^2} \, dx \)[/tex], we can use a trigonometric substitution. Here, we notice that the integrand involves a square root of the form [tex]\( \sqrt{a^2 - x^2} \)[/tex] which suggests a trigonometric substitution.
1. Substitution:
Let [tex]\( x = 2 \sin \theta \)[/tex]. Then, [tex]\( dx = 2 \cos \theta \, d\theta \)[/tex].
2. Rewrite the Integral:
Substitute [tex]\( x = 2 \sin \theta \)[/tex] into the integral:
[tex]\[ \int \sqrt{4 - x^2} \, dx = \int \sqrt{4 - (2\sin \theta)^2} \cdot 2 \cos \theta \, d\theta = \int \sqrt{4 - 4\sin^2 \theta} \cdot 2 \cos \theta \, d\theta \][/tex]
Simplify the square root:
[tex]\[ \sqrt{4 - 4\sin^2 \theta} = \sqrt{4(1 - \sin^2 \theta)} = \sqrt{4 \cos^2 \theta} = 2 \cos \theta \][/tex]
Thus, the integral becomes:
[tex]\[ \int 2 \cos \theta \cdot 2 \cos \theta \, d\theta = \int 4 \cos^2 \theta \, d\theta \][/tex]
3. Simplify Using a Trigonometric Identity:
Use the double-angle identity: [tex]\( \cos^2 \theta = \frac{1 + \cos(2\theta)}{2} \)[/tex]:
[tex]\[ \int 4 \cos^2 \theta \, d\theta = \int 4 \left( \frac{1 + \cos(2\theta)}{2} \right) d\theta = \int (2 + 2 \cos(2\theta)) \, d\theta \][/tex]
4. Integrate:
[tex]\[ \int 2 \, d\theta + \int 2 \cos(2\theta) \, d\theta \][/tex]
The integral of the first term is straightforward:
[tex]\[ \int 2 \, d\theta = 2\theta \][/tex]
For the second term, use the substitution [tex]\( u = 2\theta \)[/tex], [tex]\( du = 2 \, d\theta \)[/tex] i.e. [tex]\( d\theta = \frac{du}{2} \)[/tex]:
[tex]\[ \int 2 \cos(2\theta) \, d\theta = \int 2 \cos u \cdot \frac{du}{2} = \int \cos u \, du = \sin u \][/tex]
Substitute back [tex]\( u = 2\theta \)[/tex]:
[tex]\[ \sin(2\theta) \][/tex]
So, combining the results:
[tex]\[ \int \sqrt{4-x^2} \, dx = 2\theta + \sin(2\theta) + C \][/tex]
5. Substitute Back [tex]\( \theta \)[/tex]:
Recall [tex]\( x = 2 \sin \theta \)[/tex], thus [tex]\( \theta = \sin^{-1}\left(\frac{x}{2}\right) \)[/tex]:
[tex]\[ \sin(2\theta) = 2\sin \theta \cos \theta = 2 \left(\frac{x}{2}\right) \sqrt{1 - \left(\frac{x}{2}\right)^2} = x \sqrt{1 - \frac{x^2}{4}} = \frac{x \sqrt{4 - x^2}}{2} \][/tex]
Therefore:
[tex]\[ 2\theta = 2 \sin^{-1}\left(\frac{x}{2}\right) \][/tex]
Substitute these back:
[tex]\[ 2 \sin^{-1}\left(\frac{x}{2}\right) + \frac{x \sqrt{4 - x^2}}{2} + C \][/tex]
Thus, the evaluated integral in Part (a) is:
[tex]\[ \int \sqrt{4-x^2} \, dx = \frac{x\sqrt{4 - x^2}}{2} + 2 \sin^{-1}\left(\frac{x}{2}\right) + C \][/tex]
### Part (b): [tex]\( \int (1 + \tan x) \cos x \, dx \)[/tex]
To evaluate [tex]\( \int(1 + \tan x) \cos x \, dx \)[/tex]:
1. Distribute [tex]\( \cos x \)[/tex]:
[tex]\[ \int (1 + \tan x) \cos x \, dx = \int \cos x \, dx + \int \tan x \cos x \, dx \][/tex]
2. Evaluate Each Integral:
- The first integral is straightforward:
[tex]\[ \int \cos x \, dx = \sin x \][/tex]
- For the second integral, note that [tex]\( \tan x = \frac{\sin x}{\cos x} \)[/tex]:
[tex]\[ \int \tan x \cos x \, dx = \int \sin x \, dx = -\cos x \][/tex]
3. Combine the Results:
[tex]\[ \sin x - \cos x + C \][/tex]
Thus, the evaluated integral in Part (b) is:
[tex]\[ \int (1 + \tan x) \cos x \, dx = \sin x - \cos x + C \][/tex]
So the final answers are:
- (a): [tex]\(\int \sqrt{4-x^2} \, dx = \frac{x \sqrt{4-x^2}}{2} + 2 \sin^{-1}\left(\frac{x}{2}\right) + C\)[/tex]
- (b): [tex]\(\int (1+\tan x) \cos x \, dx = \sin x - \cos x + C\)[/tex]
### Part (a): [tex]\( \int \sqrt{4-x^2} \, dx \)[/tex]
To evaluate the integral [tex]\( \int \sqrt{4-x^2} \, dx \)[/tex], we can use a trigonometric substitution. Here, we notice that the integrand involves a square root of the form [tex]\( \sqrt{a^2 - x^2} \)[/tex] which suggests a trigonometric substitution.
1. Substitution:
Let [tex]\( x = 2 \sin \theta \)[/tex]. Then, [tex]\( dx = 2 \cos \theta \, d\theta \)[/tex].
2. Rewrite the Integral:
Substitute [tex]\( x = 2 \sin \theta \)[/tex] into the integral:
[tex]\[ \int \sqrt{4 - x^2} \, dx = \int \sqrt{4 - (2\sin \theta)^2} \cdot 2 \cos \theta \, d\theta = \int \sqrt{4 - 4\sin^2 \theta} \cdot 2 \cos \theta \, d\theta \][/tex]
Simplify the square root:
[tex]\[ \sqrt{4 - 4\sin^2 \theta} = \sqrt{4(1 - \sin^2 \theta)} = \sqrt{4 \cos^2 \theta} = 2 \cos \theta \][/tex]
Thus, the integral becomes:
[tex]\[ \int 2 \cos \theta \cdot 2 \cos \theta \, d\theta = \int 4 \cos^2 \theta \, d\theta \][/tex]
3. Simplify Using a Trigonometric Identity:
Use the double-angle identity: [tex]\( \cos^2 \theta = \frac{1 + \cos(2\theta)}{2} \)[/tex]:
[tex]\[ \int 4 \cos^2 \theta \, d\theta = \int 4 \left( \frac{1 + \cos(2\theta)}{2} \right) d\theta = \int (2 + 2 \cos(2\theta)) \, d\theta \][/tex]
4. Integrate:
[tex]\[ \int 2 \, d\theta + \int 2 \cos(2\theta) \, d\theta \][/tex]
The integral of the first term is straightforward:
[tex]\[ \int 2 \, d\theta = 2\theta \][/tex]
For the second term, use the substitution [tex]\( u = 2\theta \)[/tex], [tex]\( du = 2 \, d\theta \)[/tex] i.e. [tex]\( d\theta = \frac{du}{2} \)[/tex]:
[tex]\[ \int 2 \cos(2\theta) \, d\theta = \int 2 \cos u \cdot \frac{du}{2} = \int \cos u \, du = \sin u \][/tex]
Substitute back [tex]\( u = 2\theta \)[/tex]:
[tex]\[ \sin(2\theta) \][/tex]
So, combining the results:
[tex]\[ \int \sqrt{4-x^2} \, dx = 2\theta + \sin(2\theta) + C \][/tex]
5. Substitute Back [tex]\( \theta \)[/tex]:
Recall [tex]\( x = 2 \sin \theta \)[/tex], thus [tex]\( \theta = \sin^{-1}\left(\frac{x}{2}\right) \)[/tex]:
[tex]\[ \sin(2\theta) = 2\sin \theta \cos \theta = 2 \left(\frac{x}{2}\right) \sqrt{1 - \left(\frac{x}{2}\right)^2} = x \sqrt{1 - \frac{x^2}{4}} = \frac{x \sqrt{4 - x^2}}{2} \][/tex]
Therefore:
[tex]\[ 2\theta = 2 \sin^{-1}\left(\frac{x}{2}\right) \][/tex]
Substitute these back:
[tex]\[ 2 \sin^{-1}\left(\frac{x}{2}\right) + \frac{x \sqrt{4 - x^2}}{2} + C \][/tex]
Thus, the evaluated integral in Part (a) is:
[tex]\[ \int \sqrt{4-x^2} \, dx = \frac{x\sqrt{4 - x^2}}{2} + 2 \sin^{-1}\left(\frac{x}{2}\right) + C \][/tex]
### Part (b): [tex]\( \int (1 + \tan x) \cos x \, dx \)[/tex]
To evaluate [tex]\( \int(1 + \tan x) \cos x \, dx \)[/tex]:
1. Distribute [tex]\( \cos x \)[/tex]:
[tex]\[ \int (1 + \tan x) \cos x \, dx = \int \cos x \, dx + \int \tan x \cos x \, dx \][/tex]
2. Evaluate Each Integral:
- The first integral is straightforward:
[tex]\[ \int \cos x \, dx = \sin x \][/tex]
- For the second integral, note that [tex]\( \tan x = \frac{\sin x}{\cos x} \)[/tex]:
[tex]\[ \int \tan x \cos x \, dx = \int \sin x \, dx = -\cos x \][/tex]
3. Combine the Results:
[tex]\[ \sin x - \cos x + C \][/tex]
Thus, the evaluated integral in Part (b) is:
[tex]\[ \int (1 + \tan x) \cos x \, dx = \sin x - \cos x + C \][/tex]
So the final answers are:
- (a): [tex]\(\int \sqrt{4-x^2} \, dx = \frac{x \sqrt{4-x^2}}{2} + 2 \sin^{-1}\left(\frac{x}{2}\right) + C\)[/tex]
- (b): [tex]\(\int (1+\tan x) \cos x \, dx = \sin x - \cos x + C\)[/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.