At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Sure, let's solve the quadratic equation [tex]\(4x^2 + 45x + 24 = 0\)[/tex] step-by-step using the quadratic formula. The quadratic formula is:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
where [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] are the coefficients of the equation [tex]\(ax^2 + bx + c = 0\)[/tex].
Given:
- [tex]\(a = 4\)[/tex]
- [tex]\(b = 45\)[/tex]
- [tex]\(c = 24\)[/tex]
First, we calculate the discriminant ([tex]\(\Delta\)[/tex]):
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the values, we get:
[tex]\[ \Delta = 45^2 - 4 \cdot 4 \cdot 24 \][/tex]
[tex]\[ \Delta = 2025 - 384 \][/tex]
[tex]\[ \Delta = 1641 \][/tex]
Now, we use the quadratic formula to find the solutions:
[tex]\[ x = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
First solution already given:
[tex]\[ x_1 = -10.69 \][/tex]
To find the other solution ([tex]\(x_2\)[/tex]), we proceed as follows:
[tex]\[ x_2 = \frac{-b - \sqrt{\Delta}}{2a} \][/tex]
Substituting the values, we get:
[tex]\[ x_2 = \frac{-45 - \sqrt{1641}}{2 \cdot 4} \][/tex]
[tex]\[ x_2 = \frac{-45 - \sqrt{1641}}{8} \][/tex]
Calculating further gives:
[tex]\[ x_2 \approx \frac{-45 - 40.5}{8} \][/tex]
[tex]\[ x_2 \approx \frac{-85.5}{8} \][/tex]
[tex]\[ x_2 \approx -10.688 \][/tex]
Since this is very close to the already provided value of [tex]\(x_1\)[/tex], we use the positive root for verification:
[tex]\[ x_2 = \frac{-b + \sqrt{\Delta}}{2a} \][/tex]
Substituting the values, we get:
[tex]\[ x_2 = \frac{-45 + \sqrt{1641}}{8} \][/tex]
[tex]\[ x_2 \approx \frac{-45 + 40.5}{8} \][/tex]
[tex]\[ x_2 \approx \frac{-4.5}{8} \][/tex]
[tex]\[ x_2 \approx -0.5625 \][/tex]
Rounding to the hundredths place:
[tex]\[ x_2 \approx -0.56 \][/tex]
Thus, the other solution is [tex]\(-0.56\)[/tex].
Hence, the correct answer is:
[tex]\[ \boxed{-0.56} \][/tex]
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
where [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] are the coefficients of the equation [tex]\(ax^2 + bx + c = 0\)[/tex].
Given:
- [tex]\(a = 4\)[/tex]
- [tex]\(b = 45\)[/tex]
- [tex]\(c = 24\)[/tex]
First, we calculate the discriminant ([tex]\(\Delta\)[/tex]):
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the values, we get:
[tex]\[ \Delta = 45^2 - 4 \cdot 4 \cdot 24 \][/tex]
[tex]\[ \Delta = 2025 - 384 \][/tex]
[tex]\[ \Delta = 1641 \][/tex]
Now, we use the quadratic formula to find the solutions:
[tex]\[ x = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
First solution already given:
[tex]\[ x_1 = -10.69 \][/tex]
To find the other solution ([tex]\(x_2\)[/tex]), we proceed as follows:
[tex]\[ x_2 = \frac{-b - \sqrt{\Delta}}{2a} \][/tex]
Substituting the values, we get:
[tex]\[ x_2 = \frac{-45 - \sqrt{1641}}{2 \cdot 4} \][/tex]
[tex]\[ x_2 = \frac{-45 - \sqrt{1641}}{8} \][/tex]
Calculating further gives:
[tex]\[ x_2 \approx \frac{-45 - 40.5}{8} \][/tex]
[tex]\[ x_2 \approx \frac{-85.5}{8} \][/tex]
[tex]\[ x_2 \approx -10.688 \][/tex]
Since this is very close to the already provided value of [tex]\(x_1\)[/tex], we use the positive root for verification:
[tex]\[ x_2 = \frac{-b + \sqrt{\Delta}}{2a} \][/tex]
Substituting the values, we get:
[tex]\[ x_2 = \frac{-45 + \sqrt{1641}}{8} \][/tex]
[tex]\[ x_2 \approx \frac{-45 + 40.5}{8} \][/tex]
[tex]\[ x_2 \approx \frac{-4.5}{8} \][/tex]
[tex]\[ x_2 \approx -0.5625 \][/tex]
Rounding to the hundredths place:
[tex]\[ x_2 \approx -0.56 \][/tex]
Thus, the other solution is [tex]\(-0.56\)[/tex].
Hence, the correct answer is:
[tex]\[ \boxed{-0.56} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.