At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve this problem, we need to simplify both expressions provided, [tex]\(4 x^2 \sqrt{5 x^4}\)[/tex] and [tex]\(3 \sqrt{5 x^6}\)[/tex], and determine if they are equivalent.
### Simplifying [tex]\(4 x^2 \sqrt{5 x^4}\)[/tex]:
1. Inside the square root:
[tex]\[\sqrt{5 x^4}\][/tex]
This can be split into:
[tex]\[\sqrt{5} \cdot \sqrt{x^4}\][/tex]
2. Simplify [tex]\(\sqrt{x^4}\)[/tex]:
[tex]\[\sqrt{x^4} = x^2\][/tex]
3. Substitute back:
[tex]\[\sqrt{5 x^4} = \sqrt{5} \cdot x^2\][/tex]
4. Multiply with the coefficient [tex]\(4 x^2\)[/tex]:
[tex]\(4 x^2 \cdot (\sqrt{5} \cdot x^2)\)[/tex]:
[tex]\[4 x^2 \cdot x^2 \cdot \sqrt{5} = 4 x^4 \sqrt{5}\][/tex]
### Simplifying [tex]\(3 \sqrt{5 x^6}\)[/tex]:
1. Inside the square root:
[tex]\[\sqrt{5 x^6}\][/tex]
This can be split into:
[tex]\[\sqrt{5} \cdot \sqrt{x^6}\][/tex]
2. Simplify [tex]\(\sqrt{x^6}\)[/tex]:
[tex]\[\sqrt{x^6} = x^3\][/tex]
3. Substitute back:
[tex]\[\sqrt{5 x^6} = \sqrt{5} \cdot x^3\][/tex]
4. Multiply with the coefficient [tex]\(3\)[/tex]:
[tex]\(3 \cdot (\sqrt{5} \cdot x^3)\)[/tex]:
[tex]\[3 x^3 \sqrt{5}\][/tex]
### Compare the two simplified expressions:
- The first expression simplifies to [tex]\(4 x^4 \sqrt{5}\)[/tex]
- The second expression simplifies to [tex]\(3 x^3 \sqrt{5}\)[/tex]
It is clear that the two expressions are not equivalent. Therefore, none of the provided expressions are equivalent to both [tex]\(4 x^2 \sqrt{5 x^4}\)[/tex] and [tex]\(3 \sqrt{5 x^6}\)[/tex] simultaneously.
However, we are asked for the equivalent expression, where only one of the given options likely consider one of the above equivalence results only (if it is matching).
### Considering both provided simplified results with the Options:
- A. [tex]\(12 x^{10} \sqrt{5}\)[/tex]:
[tex]\(\text{Clearly not matching as terms hence not equivalent, so ignore.}\)[/tex]
- B. [tex]\(60 x^8\)[/tex]:
[tex]\(\text{Clearly not matching as terms hence not equivalent, so ignore.}\)[/tex]
- C. [tex]\(35 x^{18}\)[/tex]:
[tex]\(\text{Clearly not matching as terms hence not equivalent, so ignore.}\)[/tex]
- D. [tex]\(7 x^{10} \sqrt{5}\)[/tex]:
[tex]\(\text{Clearly not matching as terms hence not equivalent, so ignore.}\)[/tex]
Since no option matches directly any simplified term:
Thus, none of the options accurately represent the equivalence condition of the given mathematical problem based on simplifications.
### Simplifying [tex]\(4 x^2 \sqrt{5 x^4}\)[/tex]:
1. Inside the square root:
[tex]\[\sqrt{5 x^4}\][/tex]
This can be split into:
[tex]\[\sqrt{5} \cdot \sqrt{x^4}\][/tex]
2. Simplify [tex]\(\sqrt{x^4}\)[/tex]:
[tex]\[\sqrt{x^4} = x^2\][/tex]
3. Substitute back:
[tex]\[\sqrt{5 x^4} = \sqrt{5} \cdot x^2\][/tex]
4. Multiply with the coefficient [tex]\(4 x^2\)[/tex]:
[tex]\(4 x^2 \cdot (\sqrt{5} \cdot x^2)\)[/tex]:
[tex]\[4 x^2 \cdot x^2 \cdot \sqrt{5} = 4 x^4 \sqrt{5}\][/tex]
### Simplifying [tex]\(3 \sqrt{5 x^6}\)[/tex]:
1. Inside the square root:
[tex]\[\sqrt{5 x^6}\][/tex]
This can be split into:
[tex]\[\sqrt{5} \cdot \sqrt{x^6}\][/tex]
2. Simplify [tex]\(\sqrt{x^6}\)[/tex]:
[tex]\[\sqrt{x^6} = x^3\][/tex]
3. Substitute back:
[tex]\[\sqrt{5 x^6} = \sqrt{5} \cdot x^3\][/tex]
4. Multiply with the coefficient [tex]\(3\)[/tex]:
[tex]\(3 \cdot (\sqrt{5} \cdot x^3)\)[/tex]:
[tex]\[3 x^3 \sqrt{5}\][/tex]
### Compare the two simplified expressions:
- The first expression simplifies to [tex]\(4 x^4 \sqrt{5}\)[/tex]
- The second expression simplifies to [tex]\(3 x^3 \sqrt{5}\)[/tex]
It is clear that the two expressions are not equivalent. Therefore, none of the provided expressions are equivalent to both [tex]\(4 x^2 \sqrt{5 x^4}\)[/tex] and [tex]\(3 \sqrt{5 x^6}\)[/tex] simultaneously.
However, we are asked for the equivalent expression, where only one of the given options likely consider one of the above equivalence results only (if it is matching).
### Considering both provided simplified results with the Options:
- A. [tex]\(12 x^{10} \sqrt{5}\)[/tex]:
[tex]\(\text{Clearly not matching as terms hence not equivalent, so ignore.}\)[/tex]
- B. [tex]\(60 x^8\)[/tex]:
[tex]\(\text{Clearly not matching as terms hence not equivalent, so ignore.}\)[/tex]
- C. [tex]\(35 x^{18}\)[/tex]:
[tex]\(\text{Clearly not matching as terms hence not equivalent, so ignore.}\)[/tex]
- D. [tex]\(7 x^{10} \sqrt{5}\)[/tex]:
[tex]\(\text{Clearly not matching as terms hence not equivalent, so ignore.}\)[/tex]
Since no option matches directly any simplified term:
Thus, none of the options accurately represent the equivalence condition of the given mathematical problem based on simplifications.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.