Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the relationship between segments [tex]\(XY\)[/tex] and [tex]\(WZ\)[/tex], we need to analyze the slopes of the lines that contain these segments based on their given equations.
1. Convert the equations of the lines to slope-intercept form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope.
- For the line [tex]\( X-3y=-12 \)[/tex]:
[tex]\[ X - 3y = -12 \\ -3y = -X - 12 \\ y = \frac{1}{3}X + 4 \][/tex]
The slope [tex]\( m \)[/tex] of this line is [tex]\( \frac{1}{3} \)[/tex].
- For the line [tex]\( X-3y=-6 \)[/tex]:
[tex]\[ X - 3y = -6 \\ -3y = -X - 6 \\ y = \frac{1}{3}X + 2 \][/tex]
The slope [tex]\( m \)[/tex] of this line is also [tex]\( \frac{1}{3} \)[/tex].
2. Compare the slopes.
- The slope of the line containing segment [tex]\(XY\)[/tex] is [tex]\( \frac{1}{3} \)[/tex].
- The slope of the line containing segment [tex]\(WZ\)[/tex] is [tex]\( \frac{1}{3} \)[/tex].
3. Determine the relationship.
Since both lines have the same slope of [tex]\( \frac{1}{3} \)[/tex], they are parallel.
Therefore, the correct statement is:
They have the same slope of [tex]\(\frac{1}{3}\)[/tex] and are, therefore, parallel.
1. Convert the equations of the lines to slope-intercept form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope.
- For the line [tex]\( X-3y=-12 \)[/tex]:
[tex]\[ X - 3y = -12 \\ -3y = -X - 12 \\ y = \frac{1}{3}X + 4 \][/tex]
The slope [tex]\( m \)[/tex] of this line is [tex]\( \frac{1}{3} \)[/tex].
- For the line [tex]\( X-3y=-6 \)[/tex]:
[tex]\[ X - 3y = -6 \\ -3y = -X - 6 \\ y = \frac{1}{3}X + 2 \][/tex]
The slope [tex]\( m \)[/tex] of this line is also [tex]\( \frac{1}{3} \)[/tex].
2. Compare the slopes.
- The slope of the line containing segment [tex]\(XY\)[/tex] is [tex]\( \frac{1}{3} \)[/tex].
- The slope of the line containing segment [tex]\(WZ\)[/tex] is [tex]\( \frac{1}{3} \)[/tex].
3. Determine the relationship.
Since both lines have the same slope of [tex]\( \frac{1}{3} \)[/tex], they are parallel.
Therefore, the correct statement is:
They have the same slope of [tex]\(\frac{1}{3}\)[/tex] and are, therefore, parallel.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.