Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's analyze and simplify the given function step by step.
Given:
[tex]\[ f(x) = \frac{x^3 - 1}{x^3 + 1} \][/tex]
### Step 1: Factorize the numerator and the denominator.
First, note that both the numerator [tex]\(x^3 - 1\)[/tex] and the denominator [tex]\(x^3 + 1\)[/tex] can be factored using standard algebraic identities.
The difference of cubes identity is:
[tex]\[ a^3 - b^3 = (a - b)(a^2 + ab + b^2) \][/tex]
The sum of cubes identity is:
[tex]\[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \][/tex]
Using these identities, we can factorize [tex]\(x^3 - 1\)[/tex] and [tex]\(x^3 + 1\)[/tex]:
For [tex]\(x^3 - 1\)[/tex], let [tex]\(a = x\)[/tex] and [tex]\(b = 1\)[/tex]:
[tex]\[ x^3 - 1 = (x - 1)(x^2 + x \cdot 1 + 1^2) = (x - 1)(x^2 + x + 1) \][/tex]
For [tex]\(x^3 + 1\)[/tex], let [tex]\(a = x\)[/tex] and [tex]\(b = 1\)[/tex]:
[tex]\[ x^3 + 1 = (x + 1)(x^2 - x \cdot 1 + 1^2) = (x + 1)(x^2 - x + 1) \][/tex]
### Step 2: Substitute the factored forms back into the function.
Now, substituting these factored forms into the function [tex]\( f(x) \)[/tex]:
[tex]\[ f(x) = \frac{(x - 1)(x^2 + x + 1)}{(x + 1)(x^2 - x + 1)} \][/tex]
### Step 3: Simplify the expression.
Upon inspecting the numerator and the denominator, we observe that [tex]\(x^2 + x + 1\)[/tex] and [tex]\(x^2 - x + 1\)[/tex] do not simplify further through cancellation. The function, therefore, simplifies to:
[tex]\[ f(x) = \frac{(x - 1)(x^2 + x + 1)}{(x + 1)(x^2 - x + 1)} \][/tex]
Thus, the simplified function is already suitable for verifying behaviors such as limits, asymptotes, or further analysis.
### Final Answer
The function [tex]\( f(x) \)[/tex] is represented as:
[tex]\[ f(x) = \frac{x^3 - 1}{x^3 + 1} \][/tex]
This expression accurately describes the given function [tex]\( f(x) \)[/tex] in its factored form, which confirms our step-by-step simplification.
Given:
[tex]\[ f(x) = \frac{x^3 - 1}{x^3 + 1} \][/tex]
### Step 1: Factorize the numerator and the denominator.
First, note that both the numerator [tex]\(x^3 - 1\)[/tex] and the denominator [tex]\(x^3 + 1\)[/tex] can be factored using standard algebraic identities.
The difference of cubes identity is:
[tex]\[ a^3 - b^3 = (a - b)(a^2 + ab + b^2) \][/tex]
The sum of cubes identity is:
[tex]\[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \][/tex]
Using these identities, we can factorize [tex]\(x^3 - 1\)[/tex] and [tex]\(x^3 + 1\)[/tex]:
For [tex]\(x^3 - 1\)[/tex], let [tex]\(a = x\)[/tex] and [tex]\(b = 1\)[/tex]:
[tex]\[ x^3 - 1 = (x - 1)(x^2 + x \cdot 1 + 1^2) = (x - 1)(x^2 + x + 1) \][/tex]
For [tex]\(x^3 + 1\)[/tex], let [tex]\(a = x\)[/tex] and [tex]\(b = 1\)[/tex]:
[tex]\[ x^3 + 1 = (x + 1)(x^2 - x \cdot 1 + 1^2) = (x + 1)(x^2 - x + 1) \][/tex]
### Step 2: Substitute the factored forms back into the function.
Now, substituting these factored forms into the function [tex]\( f(x) \)[/tex]:
[tex]\[ f(x) = \frac{(x - 1)(x^2 + x + 1)}{(x + 1)(x^2 - x + 1)} \][/tex]
### Step 3: Simplify the expression.
Upon inspecting the numerator and the denominator, we observe that [tex]\(x^2 + x + 1\)[/tex] and [tex]\(x^2 - x + 1\)[/tex] do not simplify further through cancellation. The function, therefore, simplifies to:
[tex]\[ f(x) = \frac{(x - 1)(x^2 + x + 1)}{(x + 1)(x^2 - x + 1)} \][/tex]
Thus, the simplified function is already suitable for verifying behaviors such as limits, asymptotes, or further analysis.
### Final Answer
The function [tex]\( f(x) \)[/tex] is represented as:
[tex]\[ f(x) = \frac{x^3 - 1}{x^3 + 1} \][/tex]
This expression accurately describes the given function [tex]\( f(x) \)[/tex] in its factored form, which confirms our step-by-step simplification.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.