Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Certainly! Let's solve each integral step-by-step.
### (a) [tex]\(\int \frac{d x}{\sqrt{x^2-16}}\)[/tex]
1. Identify the integral form:
The integral [tex]\(\int \frac{d x}{\sqrt{x^2-16}}\)[/tex] resembles a standard integral that can be solved using a trigonometric substitution.
2. Trigonometric substitution:
Consider [tex]\( x = 4 \sec(\theta) \)[/tex], then [tex]\( dx = 4 \sec(\theta) \tan(\theta) d\theta \)[/tex].
3. Substitute and simplify:
Substitute [tex]\( x = 4 \sec(\theta) \)[/tex]:
[tex]\[ \sqrt{x^2 - 16} = \sqrt{16 \sec^2(\theta) - 16} = \sqrt{16 (\sec^2(\theta) - 1)} = 4 \tan(\theta) \][/tex]
So, the integral becomes:
[tex]\[ \int \frac{4 \sec(\theta) \tan(\theta) d\theta}{4 \tan(\theta)} = \int \sec(\theta) d\theta \][/tex]
4. Integrate:
The integral of [tex]\(\sec(\theta)\)[/tex] is [tex]\(\ln|\sec(\theta) + \tan(\theta)| + C\)[/tex].
[tex]\[ \int \sec(\theta) d\theta = \ln|\sec(\theta) + \tan(\theta)| + C \][/tex]
5. Back-substitute [tex]\( \theta \)[/tex]:
Since [tex]\( \sec(\theta) = \frac{x}{4} \)[/tex] and [tex]\( \tan(\theta) = \sqrt{\sec^2(\theta) - 1} = \sqrt{\left(\frac{x}{4}\right)^2 - 1} = \frac{\sqrt{x^2 - 16}}{4} \)[/tex],
[tex]\[ \sec(\theta) + \tan(\theta) = \frac{x}{4} + \frac{\sqrt{x^2 - 16}}{4} = \frac{x + \sqrt{x^2 - 16}}{4} \][/tex]
So, the integral becomes:
[tex]\[ \int \frac{d x}{\sqrt{x^2-16}} = \ln\left| \frac{x + \sqrt{x^2 - 16}}{4} \right| + C \][/tex]
For simplicity, we can remove the constant division inside the logarithm term:
[tex]\[ \int \frac{d x}{\sqrt{x^2-16}} = \ln|x + \sqrt{x^2 - 16}| + C \][/tex]
Therefore, the result for part (a) is:
[tex]\[ \boxed{\ln|x + \sqrt{x^2 - 16}| + C} \][/tex]
### (b) [tex]\(\int \frac{3 x - 5}{x^2 - 3 x + 2} d x\)[/tex]
1. Factor the denominator:
The denominator [tex]\(x^2 - 3x + 2\)[/tex] can be factored as [tex]\((x-1)(x-2)\)[/tex].
[tex]\[ \int \frac{3 x - 5}{(x-1)(x-2)} d x \][/tex]
2. Partial fraction decomposition:
We decompose [tex]\(\frac{3 x - 5}{(x-1)(x-2)}\)[/tex] into partial fractions.
[tex]\[ \frac{3 x - 5}{(x-1)(x-2)} = \frac{A}{x-1} + \frac{B}{x-2} \][/tex]
Solving for [tex]\( A \)[/tex] and [tex]\( B \)[/tex]:
[tex]\( 3 x - 5 = A (x-2) + B (x-1) \)[/tex]
Equating coefficients:
[tex]\[ \begin{cases} A + B = 3 \\ -2A - B = -5 \end{cases} \][/tex]
Solving the system of equations, we get [tex]\( A = 2 \)[/tex] and [tex]\( B = 1 \)[/tex].
Therefore:
[tex]\[ \frac{3 x - 5}{(x-1)(x-2)} = \frac{2}{x-1} + \frac{1}{x-2} \][/tex]
3. Integrate each term separately:
[tex]\[ \int \left( \frac{2}{x-1} + \frac{1}{x-2} \right) d x = 2 \int \frac{1}{x-1} d x + \int \frac{1}{x-2} d x \][/tex]
The integrals are:
[tex]\[ 2 \ln|x-1| + \ln|x-2| + C \][/tex]
Combining logarithms:
[tex]\[ \int \frac{3 x - 5}{x^2 - 3 x + 2} d x = \ln| (x-2) | + 2 \ln| (x-1) | + C \][/tex]
Therefore, the result for part (b) is:
[tex]\[ \boxed{\ln|x - 2| + 2 \ln|x - 1| + C} \][/tex]
### (a) [tex]\(\int \frac{d x}{\sqrt{x^2-16}}\)[/tex]
1. Identify the integral form:
The integral [tex]\(\int \frac{d x}{\sqrt{x^2-16}}\)[/tex] resembles a standard integral that can be solved using a trigonometric substitution.
2. Trigonometric substitution:
Consider [tex]\( x = 4 \sec(\theta) \)[/tex], then [tex]\( dx = 4 \sec(\theta) \tan(\theta) d\theta \)[/tex].
3. Substitute and simplify:
Substitute [tex]\( x = 4 \sec(\theta) \)[/tex]:
[tex]\[ \sqrt{x^2 - 16} = \sqrt{16 \sec^2(\theta) - 16} = \sqrt{16 (\sec^2(\theta) - 1)} = 4 \tan(\theta) \][/tex]
So, the integral becomes:
[tex]\[ \int \frac{4 \sec(\theta) \tan(\theta) d\theta}{4 \tan(\theta)} = \int \sec(\theta) d\theta \][/tex]
4. Integrate:
The integral of [tex]\(\sec(\theta)\)[/tex] is [tex]\(\ln|\sec(\theta) + \tan(\theta)| + C\)[/tex].
[tex]\[ \int \sec(\theta) d\theta = \ln|\sec(\theta) + \tan(\theta)| + C \][/tex]
5. Back-substitute [tex]\( \theta \)[/tex]:
Since [tex]\( \sec(\theta) = \frac{x}{4} \)[/tex] and [tex]\( \tan(\theta) = \sqrt{\sec^2(\theta) - 1} = \sqrt{\left(\frac{x}{4}\right)^2 - 1} = \frac{\sqrt{x^2 - 16}}{4} \)[/tex],
[tex]\[ \sec(\theta) + \tan(\theta) = \frac{x}{4} + \frac{\sqrt{x^2 - 16}}{4} = \frac{x + \sqrt{x^2 - 16}}{4} \][/tex]
So, the integral becomes:
[tex]\[ \int \frac{d x}{\sqrt{x^2-16}} = \ln\left| \frac{x + \sqrt{x^2 - 16}}{4} \right| + C \][/tex]
For simplicity, we can remove the constant division inside the logarithm term:
[tex]\[ \int \frac{d x}{\sqrt{x^2-16}} = \ln|x + \sqrt{x^2 - 16}| + C \][/tex]
Therefore, the result for part (a) is:
[tex]\[ \boxed{\ln|x + \sqrt{x^2 - 16}| + C} \][/tex]
### (b) [tex]\(\int \frac{3 x - 5}{x^2 - 3 x + 2} d x\)[/tex]
1. Factor the denominator:
The denominator [tex]\(x^2 - 3x + 2\)[/tex] can be factored as [tex]\((x-1)(x-2)\)[/tex].
[tex]\[ \int \frac{3 x - 5}{(x-1)(x-2)} d x \][/tex]
2. Partial fraction decomposition:
We decompose [tex]\(\frac{3 x - 5}{(x-1)(x-2)}\)[/tex] into partial fractions.
[tex]\[ \frac{3 x - 5}{(x-1)(x-2)} = \frac{A}{x-1} + \frac{B}{x-2} \][/tex]
Solving for [tex]\( A \)[/tex] and [tex]\( B \)[/tex]:
[tex]\( 3 x - 5 = A (x-2) + B (x-1) \)[/tex]
Equating coefficients:
[tex]\[ \begin{cases} A + B = 3 \\ -2A - B = -5 \end{cases} \][/tex]
Solving the system of equations, we get [tex]\( A = 2 \)[/tex] and [tex]\( B = 1 \)[/tex].
Therefore:
[tex]\[ \frac{3 x - 5}{(x-1)(x-2)} = \frac{2}{x-1} + \frac{1}{x-2} \][/tex]
3. Integrate each term separately:
[tex]\[ \int \left( \frac{2}{x-1} + \frac{1}{x-2} \right) d x = 2 \int \frac{1}{x-1} d x + \int \frac{1}{x-2} d x \][/tex]
The integrals are:
[tex]\[ 2 \ln|x-1| + \ln|x-2| + C \][/tex]
Combining logarithms:
[tex]\[ \int \frac{3 x - 5}{x^2 - 3 x + 2} d x = \ln| (x-2) | + 2 \ln| (x-1) | + C \][/tex]
Therefore, the result for part (b) is:
[tex]\[ \boxed{\ln|x - 2| + 2 \ln|x - 1| + C} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.