Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To calculate the mass of Al₂O₃ (aluminum oxide) formed when 4.5 grams of Al (aluminum) completely react, follow these steps:
1. Determine the molar masses:
- Molar mass of Al (aluminum): 26.98 g/mol
- Molar mass of Al₂O₃ (aluminum oxide): 101.96 g/mol
2. Calculate the number of moles of aluminum (Al):
- Use the formula:
[tex]\[ \text{moles of Al} = \frac{\text{mass of Al}}{\text{molar mass of Al}} \][/tex]
- Plug in the values:
[tex]\[ \text{moles of Al} = \frac{4.5 \text{ g}}{26.98 \text{ g/mol}} ≈ 0.1668 \text{ moles} \][/tex]
3. Use the stoichiometric ratio to find the moles of Al₂O₃ (aluminum oxide):
- From the balanced equation, [tex]\(2 \text{ Al (s)} + \text{Fe}_2\text{O}_3 \rightarrow \text{Al}_2\text{O}_3 + 2 \text{Fe (l)}\)[/tex], we can see that 2 moles of Al produce 1 mole of Al₂O₃.
- Therefore:
[tex]\[ \text{moles of Al}_2\text{O}_3 = \frac{\text{moles of Al}}{2} \approx \frac{0.1668 \text{ moles}}{2} ≈ 0.0834 \text{ moles} \][/tex]
4. Calculate the mass of Al₂O₃ formed:
- Use the formula:
[tex]\[ \text{mass of Al}_2\text{O}_3 = \text{moles of Al}_2\text{O}_3 \times \text{molar mass of Al}_2\text{O}_3 \][/tex]
- Plug in the values:
[tex]\[ \text{mass of Al}_2\text{O}_3 = 0.0834 \text{ moles} \times 101.96 \text{ g/mol} ≈ 8.503 \text{ g} \][/tex]
Therefore, when 4.5 grams of Al completely react, approximately 8.50 grams of Al₂O₃ are formed.
1. Determine the molar masses:
- Molar mass of Al (aluminum): 26.98 g/mol
- Molar mass of Al₂O₃ (aluminum oxide): 101.96 g/mol
2. Calculate the number of moles of aluminum (Al):
- Use the formula:
[tex]\[ \text{moles of Al} = \frac{\text{mass of Al}}{\text{molar mass of Al}} \][/tex]
- Plug in the values:
[tex]\[ \text{moles of Al} = \frac{4.5 \text{ g}}{26.98 \text{ g/mol}} ≈ 0.1668 \text{ moles} \][/tex]
3. Use the stoichiometric ratio to find the moles of Al₂O₃ (aluminum oxide):
- From the balanced equation, [tex]\(2 \text{ Al (s)} + \text{Fe}_2\text{O}_3 \rightarrow \text{Al}_2\text{O}_3 + 2 \text{Fe (l)}\)[/tex], we can see that 2 moles of Al produce 1 mole of Al₂O₃.
- Therefore:
[tex]\[ \text{moles of Al}_2\text{O}_3 = \frac{\text{moles of Al}}{2} \approx \frac{0.1668 \text{ moles}}{2} ≈ 0.0834 \text{ moles} \][/tex]
4. Calculate the mass of Al₂O₃ formed:
- Use the formula:
[tex]\[ \text{mass of Al}_2\text{O}_3 = \text{moles of Al}_2\text{O}_3 \times \text{molar mass of Al}_2\text{O}_3 \][/tex]
- Plug in the values:
[tex]\[ \text{mass of Al}_2\text{O}_3 = 0.0834 \text{ moles} \times 101.96 \text{ g/mol} ≈ 8.503 \text{ g} \][/tex]
Therefore, when 4.5 grams of Al completely react, approximately 8.50 grams of Al₂O₃ are formed.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.