Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Sure, let's go through the solution step-by-step to determine the mass of [tex]\( \text{Al}_2 \text{O}_3 \)[/tex] formed when 4.5 grams of [tex]\( \text{Fe}_2 \text{O}_3 \)[/tex] completely reacts.
### Step 1: Determine the Molar Mass of [tex]\( \text{Fe}_2 \text{O}_3 \)[/tex]
First, we need to find the molar mass of [tex]\( \text{Fe}_2 \text{O}_3 \)[/tex].
- Iron (Fe) has an atomic mass of 55.85 g/mol.
- Oxygen (O) has an atomic mass of 16.00 g/mol.
The molar mass of [tex]\( \text{Fe}_2 \text{O}_3 \)[/tex] can be calculated as follows:
[tex]\[ \text{Molar mass of } \text{Fe}_2 \text{O}_3 = 2 \times 55.85 + 3 \times 16.00 = 111.7 + 48.00 = 159.7 \text{ g/mol} \][/tex]
### Step 2: Calculate the Moles of [tex]\( \text{Fe}_2 \text{O}_3 \)[/tex]
Given the mass of [tex]\( \text{Fe}_2 \text{O}_3 \)[/tex] is 4.5 grams, we can find the number of moles:
[tex]\[ \text{Moles of } \text{Fe}_2 \text{O}_3 = \frac{\text{mass}}{\text{molar mass}} = \frac{4.5 \text{ g}}{159.7 \text{ g/mol}} \approx 0.0282 \text{ moles} \][/tex]
### Step 3: Determine the Molar Mass of [tex]\( \text{Al}_2 \text{O}_3 \)[/tex]
Next, we find the molar mass of [tex]\( \text{Al}_2 \text{O}_3 \)[/tex].
- Aluminum (Al) has an atomic mass of 26.98 g/mol.
- Oxygen (O) has an atomic mass of 16.00 g/mol.
The molar mass of [tex]\( \text{Al}_2 \text{O}_3 \)[/tex] can be calculated as follows:
[tex]\[ \text{Molar mass of } \text{Al}_2 \text{O}_3 = 2 \times 26.98 + 3 \times 16.00 = 53.96 + 48.00 = 101.96 \text{ g/mol} \][/tex]
### Step 4: Calculate the Moles and Mass of [tex]\( \text{Al}_2 \text{O}_3 \)[/tex] Formed
From the balanced chemical equation:
[tex]\[ \text{Fe}_2 \text{O}_3 + 2\text{Al} \rightarrow 2\text{Fe} + \text{Al}_2 \text{O}_3 \][/tex]
The molar ratio of [tex]\( \text{Fe}_2 \text{O}_3 \)[/tex] to [tex]\( \text{Al}_2 \text{O}_3 \)[/tex] is 1:1.
Therefore, the moles of [tex]\( \text{Al}_2 \text{O}_3 \)[/tex] produced will be the same as the moles of [tex]\( \text{Fe}_2 \text{O}_3 \)[/tex] reacted:
[tex]\[ \text{Moles of } \text{Al}_2 \text{O}_3 = 0.0282 \text{ moles} \][/tex]
Finally, we find the mass of [tex]\( \text{Al}_2 \text{O}_3 \)[/tex] formed:
[tex]\[ \text{Mass of } \text{Al}_2 \text{O}_3 = \text{moles} \times \text{molar mass} = 0.0282 \text{ moles} \times 101.96 \text{ g/mol} \approx 2.87 \text{ g} \][/tex]
### Conclusion
Therefore, the mass of [tex]\( \text{Al}_2 \text{O}_3 \)[/tex] formed when 4.5 grams of [tex]\( \text{Fe}_2 \text{O}_3 \)[/tex] completely reacts is approximately [tex]\( \boxed{2.9 \text{ g}} \)[/tex], rounded to two significant figures.
### Step 1: Determine the Molar Mass of [tex]\( \text{Fe}_2 \text{O}_3 \)[/tex]
First, we need to find the molar mass of [tex]\( \text{Fe}_2 \text{O}_3 \)[/tex].
- Iron (Fe) has an atomic mass of 55.85 g/mol.
- Oxygen (O) has an atomic mass of 16.00 g/mol.
The molar mass of [tex]\( \text{Fe}_2 \text{O}_3 \)[/tex] can be calculated as follows:
[tex]\[ \text{Molar mass of } \text{Fe}_2 \text{O}_3 = 2 \times 55.85 + 3 \times 16.00 = 111.7 + 48.00 = 159.7 \text{ g/mol} \][/tex]
### Step 2: Calculate the Moles of [tex]\( \text{Fe}_2 \text{O}_3 \)[/tex]
Given the mass of [tex]\( \text{Fe}_2 \text{O}_3 \)[/tex] is 4.5 grams, we can find the number of moles:
[tex]\[ \text{Moles of } \text{Fe}_2 \text{O}_3 = \frac{\text{mass}}{\text{molar mass}} = \frac{4.5 \text{ g}}{159.7 \text{ g/mol}} \approx 0.0282 \text{ moles} \][/tex]
### Step 3: Determine the Molar Mass of [tex]\( \text{Al}_2 \text{O}_3 \)[/tex]
Next, we find the molar mass of [tex]\( \text{Al}_2 \text{O}_3 \)[/tex].
- Aluminum (Al) has an atomic mass of 26.98 g/mol.
- Oxygen (O) has an atomic mass of 16.00 g/mol.
The molar mass of [tex]\( \text{Al}_2 \text{O}_3 \)[/tex] can be calculated as follows:
[tex]\[ \text{Molar mass of } \text{Al}_2 \text{O}_3 = 2 \times 26.98 + 3 \times 16.00 = 53.96 + 48.00 = 101.96 \text{ g/mol} \][/tex]
### Step 4: Calculate the Moles and Mass of [tex]\( \text{Al}_2 \text{O}_3 \)[/tex] Formed
From the balanced chemical equation:
[tex]\[ \text{Fe}_2 \text{O}_3 + 2\text{Al} \rightarrow 2\text{Fe} + \text{Al}_2 \text{O}_3 \][/tex]
The molar ratio of [tex]\( \text{Fe}_2 \text{O}_3 \)[/tex] to [tex]\( \text{Al}_2 \text{O}_3 \)[/tex] is 1:1.
Therefore, the moles of [tex]\( \text{Al}_2 \text{O}_3 \)[/tex] produced will be the same as the moles of [tex]\( \text{Fe}_2 \text{O}_3 \)[/tex] reacted:
[tex]\[ \text{Moles of } \text{Al}_2 \text{O}_3 = 0.0282 \text{ moles} \][/tex]
Finally, we find the mass of [tex]\( \text{Al}_2 \text{O}_3 \)[/tex] formed:
[tex]\[ \text{Mass of } \text{Al}_2 \text{O}_3 = \text{moles} \times \text{molar mass} = 0.0282 \text{ moles} \times 101.96 \text{ g/mol} \approx 2.87 \text{ g} \][/tex]
### Conclusion
Therefore, the mass of [tex]\( \text{Al}_2 \text{O}_3 \)[/tex] formed when 4.5 grams of [tex]\( \text{Fe}_2 \text{O}_3 \)[/tex] completely reacts is approximately [tex]\( \boxed{2.9 \text{ g}} \)[/tex], rounded to two significant figures.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.