Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve the problem of combining the fractions [tex]\(\frac{6}{x} + \frac{5}{7}\)[/tex] into a single expression, follow these steps:
1. Identify a Common Denominator: The denominators in the given fractions are [tex]\(x\)[/tex] and 7. To combine these fractions, we need a common denominator, which would be the product of the individual denominators. Therefore, the common denominator is [tex]\(7x\)[/tex].
2. Rewrite Each Fraction with the Common Denominator:
- For [tex]\(\frac{6}{x}\)[/tex], multiply both the numerator and denominator by 7 to get [tex]\(\frac{6 \cdot 7}{x \cdot 7} = \frac{42}{7x}\)[/tex].
- For [tex]\(\frac{5}{7}\)[/tex], multiply both the numerator and denominator by [tex]\(x\)[/tex] to get [tex]\(\frac{5 \cdot x}{7 \cdot x} = \frac{5x}{7x}\)[/tex].
3. Combine the Fractions Using the Common Denominator:
Once the fractions are rewritten to share a common denominator, they can be added directly:
[tex]\[ \frac{42}{7x} + \frac{5x}{7x} = \frac{42 + 5x}{7x} \][/tex]
Therefore, the combined fraction [tex]\(\frac{6}{x} + \frac{5}{7}\)[/tex] can be simplified to:
[tex]\(\frac{42 + 5x}{7x}\)[/tex].
Comparing this with the given options:
- F. [tex]\(\frac{11}{7 x}\)[/tex]
- G. [tex]\(\frac{30}{7 x}\)[/tex]
- H. [tex]\(\frac{11}{x+7}\)[/tex]
- J. [tex]\(\frac{35+6 x}{7+x}\)[/tex]
- K. [tex]\(\frac{42+5 x}{7 x}\)[/tex]
The correct answer is:
[tex]\[ \boxed{\frac{42 + 5x}{7x}} \quad \text{(Option K)} \][/tex]
1. Identify a Common Denominator: The denominators in the given fractions are [tex]\(x\)[/tex] and 7. To combine these fractions, we need a common denominator, which would be the product of the individual denominators. Therefore, the common denominator is [tex]\(7x\)[/tex].
2. Rewrite Each Fraction with the Common Denominator:
- For [tex]\(\frac{6}{x}\)[/tex], multiply both the numerator and denominator by 7 to get [tex]\(\frac{6 \cdot 7}{x \cdot 7} = \frac{42}{7x}\)[/tex].
- For [tex]\(\frac{5}{7}\)[/tex], multiply both the numerator and denominator by [tex]\(x\)[/tex] to get [tex]\(\frac{5 \cdot x}{7 \cdot x} = \frac{5x}{7x}\)[/tex].
3. Combine the Fractions Using the Common Denominator:
Once the fractions are rewritten to share a common denominator, they can be added directly:
[tex]\[ \frac{42}{7x} + \frac{5x}{7x} = \frac{42 + 5x}{7x} \][/tex]
Therefore, the combined fraction [tex]\(\frac{6}{x} + \frac{5}{7}\)[/tex] can be simplified to:
[tex]\(\frac{42 + 5x}{7x}\)[/tex].
Comparing this with the given options:
- F. [tex]\(\frac{11}{7 x}\)[/tex]
- G. [tex]\(\frac{30}{7 x}\)[/tex]
- H. [tex]\(\frac{11}{x+7}\)[/tex]
- J. [tex]\(\frac{35+6 x}{7+x}\)[/tex]
- K. [tex]\(\frac{42+5 x}{7 x}\)[/tex]
The correct answer is:
[tex]\[ \boxed{\frac{42 + 5x}{7x}} \quad \text{(Option K)} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.