Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the equation of the line that passes through the origin and is parallel to line [tex]\( AB \)[/tex] which passes through the points [tex]\( A(-3, 0) \)[/tex] and [tex]\( B(-6, 5) \)[/tex], we can follow these steps:
### Step 1: Calculate the slope of line [tex]\( AB \)[/tex]
The formula to calculate the slope of a line passing through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ \text{slope} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Applying the formula to our points:
[tex]\[ \text{slope of } AB = \frac{5 - 0}{-6 - (-3)} = \frac{5 - 0}{-6 + 3} = \frac{5}{-3} = -\frac{5}{3} \][/tex]
So, the slope of line [tex]\( AB \)[/tex] is [tex]\(-\frac{5}{3}\)[/tex].
### Step 2: Determine the equation of the line through the origin with the same slope
A line that is parallel to [tex]\( AB \)[/tex] and passes through the origin will have the same slope, [tex]\(-\frac{5}{3}\)[/tex]. The general form for the equation of a line in slope-intercept form [tex]\( y = mx + b \)[/tex] passing through the origin [tex]\((0, 0)\)[/tex] simplifies to:
[tex]\[ y = mx \Rightarrow y = -\frac{5}{3}x \][/tex]
### Step 3: Convert the equation to standard form
To convert [tex]\( y = -\frac{5}{3}x \)[/tex] to standard form [tex]\( Ax + By = C \)[/tex], we can multiply every term by [tex]\( 3 \)[/tex] to clear the fraction:
[tex]\[ y = -\frac{5}{3}x \][/tex]
Multiply by 3:
[tex]\[ 3y = -5x \][/tex]
Rearrange terms to match the format [tex]\( Ax + By = C \)[/tex]:
[tex]\[ 5x + 3y = 0 \Rightarrow 5x - (-3)y = 0 \][/tex]
Comparing with the options given:
- A. [tex]\( 5x - 3y = 0 \)[/tex]
- B. [tex]\( -x + 3y = 0 \)[/tex]
- C. [tex]\( -5x - 3y = 0 \)[/tex]
- D. [tex]\( 3x + 5y = 0 \)[/tex]
- E. [tex]\( -3x + 5y = 0 \)[/tex]
We see that the correct equation in standard form is:
### Final Answer
[tex]\[ \boxed{5x - 3y = 0} \][/tex]
### Step 1: Calculate the slope of line [tex]\( AB \)[/tex]
The formula to calculate the slope of a line passing through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ \text{slope} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Applying the formula to our points:
[tex]\[ \text{slope of } AB = \frac{5 - 0}{-6 - (-3)} = \frac{5 - 0}{-6 + 3} = \frac{5}{-3} = -\frac{5}{3} \][/tex]
So, the slope of line [tex]\( AB \)[/tex] is [tex]\(-\frac{5}{3}\)[/tex].
### Step 2: Determine the equation of the line through the origin with the same slope
A line that is parallel to [tex]\( AB \)[/tex] and passes through the origin will have the same slope, [tex]\(-\frac{5}{3}\)[/tex]. The general form for the equation of a line in slope-intercept form [tex]\( y = mx + b \)[/tex] passing through the origin [tex]\((0, 0)\)[/tex] simplifies to:
[tex]\[ y = mx \Rightarrow y = -\frac{5}{3}x \][/tex]
### Step 3: Convert the equation to standard form
To convert [tex]\( y = -\frac{5}{3}x \)[/tex] to standard form [tex]\( Ax + By = C \)[/tex], we can multiply every term by [tex]\( 3 \)[/tex] to clear the fraction:
[tex]\[ y = -\frac{5}{3}x \][/tex]
Multiply by 3:
[tex]\[ 3y = -5x \][/tex]
Rearrange terms to match the format [tex]\( Ax + By = C \)[/tex]:
[tex]\[ 5x + 3y = 0 \Rightarrow 5x - (-3)y = 0 \][/tex]
Comparing with the options given:
- A. [tex]\( 5x - 3y = 0 \)[/tex]
- B. [tex]\( -x + 3y = 0 \)[/tex]
- C. [tex]\( -5x - 3y = 0 \)[/tex]
- D. [tex]\( 3x + 5y = 0 \)[/tex]
- E. [tex]\( -3x + 5y = 0 \)[/tex]
We see that the correct equation in standard form is:
### Final Answer
[tex]\[ \boxed{5x - 3y = 0} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.