Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Certainly! Let's go through the solution step-by-step.
### Part A: Transforming the Data and Creating a Linear Plot
To begin with, let's transform the given data and then create a linear plot.
#### Transforming the Data
We have the temperature data [tex]\( T \)[/tex] and the rate constants [tex]\( k \)[/tex] as follows:
[tex]\[ \begin{array}{|c|c|} \hline T (K) & k (M^{-1}s^{-1}) \\ \hline 288 & 0.0521 \\ 298 & 0.101 \\ 308 & 0.184 \\ 318 & 0.332 \\ \hline \end{array} \][/tex]
1. Calculate [tex]\( \frac{1}{T} \)[/tex]:
[tex]\[ \frac{1}{T} \text {(in K}^{-1}) \text{ for each temperature is:} \][/tex]
[tex]\[ \frac{1}{288} = 0.003472 \, \text{K}^{-1} \][/tex]
[tex]\[ \frac{1}{298} = 0.003356 \, \text{K}^{-1} \][/tex]
[tex]\[ \frac{1}{308} = 0.003247 \, \text{K}^{-1} \][/tex]
[tex]\[ \frac{1}{318} = 0.003145 \, \text{K}^{-1} \][/tex]
2. Calculate [tex]\( \ln(k) \)[/tex]:
[tex]\[ \ln(0.0521) = -2.955 \][/tex]
[tex]\[ \ln(0.101) = -2.293 \][/tex]
[tex]\[ \ln(0.184) = -1.693 \][/tex]
[tex]\[ \ln(0.332) = -1.103 \][/tex]
So, the transformed data is:
[tex]\[ \begin{array}{|c|c|} \hline \frac{1}{T} (K^{-1}) & \ln(k) \\ \hline 0.003472 & -2.955 \\ 0.003356 & -2.293 \\ 0.003247 & -1.693 \\ 0.003145 & -1.103 \\ \hline \end{array} \][/tex]
#### Creating the Linear Plot
Using Excel or any graphing tool, plot [tex]\( \ln(k) \)[/tex] (y-axis) vs. [tex]\( \frac{1}{T} \)[/tex] (x-axis).
1. Labeling:
- Title: Arrhenius Plot
- x-axis: [tex]\( \frac{1}{T} \)[/tex] (K[tex]\(^{-1}\)[/tex])
- y-axis: [tex]\( \ln(k) \)[/tex]
2. Plot the Data Points and Add Linear Fit:
- Display the equation of the line on the graph.
The equation of the line should look something like this (based on linear regression trendline):
[tex]\[ \ln k = -5638.34 \left(\frac{1}{T}\right) + 16.6231 \][/tex]
### Part B: Calculating Activation Energy [tex]\( E_a \)[/tex]
From the equation of the line generated from plotting the data, we have:
[tex]\[ \ln k = -\frac{E_a}{R} \left(\frac{1}{T}\right) + \ln A \][/tex]
Comparing this with the equation of our line:
[tex]\[ \ln k = -5638.34 \left(\frac{1}{T}\right) + 16.6231 \][/tex]
The slope of the line is [tex]\(-5638.34\)[/tex], and it is equal to [tex]\(-\frac{E_a}{R}\)[/tex].
1. Calculate [tex]\( E_a \)[/tex]:
[tex]\[ -5638.34 = -\frac{E_a}{R} \][/tex]
[tex]\[ 5638.34 = \frac{E_a}{8.314} \][/tex]
[tex]\[ E_a = 5638.34 \times 8.314 = 46877.16 \, \text{J/mol} \][/tex]
2. Convert [tex]\( E_a \)[/tex] to kJ/mol:
[tex]\[ E_a (kJ/mol) = \frac{46877.16}{1000} = 46.877 \, \text{kJ/mol} \][/tex]
### Part C: Determining the Order of the Reaction
From the units of the rate constant [tex]\( k \)[/tex]:
- The units of [tex]\( k \)[/tex] are [tex]\( M^{-1} s^{-1} \)[/tex].
For a reaction of order [tex]\( n \)[/tex]:
[tex]\[ \text{Rate Constant (k)} \text{ units} = \left( \text{Concentration} \right)^{1-n} \left( \text{Time} \right)^{-1} = \left(M^{1-n}\right)s^{-1} \][/tex]
Given that [tex]\( k \)[/tex] has units [tex]\( M^{-1} s^{-1} \)[/tex]:
- Thus, [tex]\( 1-n = -1 \)[/tex]
- This implies that [tex]\( n = 2 \)[/tex].
The reaction is second order.
Rate Law Expression for a second-order reaction:
[tex]\[ \text{Rate} = k[B]^2 \][/tex]
### Summary
- Transformed data and created a linear plot with the equation of the line as [tex]\( \ln k = -5638.34 \left(\frac{1}{T}\right) + 16.6231 \)[/tex].
- Calculated the activation energy [tex]\( E_a \)[/tex] to be [tex]\( 46.877 \, \text{kJ/mol} \)[/tex].
- Determined that the reaction is second order with the rate law expression: [tex]\( \text{Rate} = k[B]^2 \)[/tex].
### Part A: Transforming the Data and Creating a Linear Plot
To begin with, let's transform the given data and then create a linear plot.
#### Transforming the Data
We have the temperature data [tex]\( T \)[/tex] and the rate constants [tex]\( k \)[/tex] as follows:
[tex]\[ \begin{array}{|c|c|} \hline T (K) & k (M^{-1}s^{-1}) \\ \hline 288 & 0.0521 \\ 298 & 0.101 \\ 308 & 0.184 \\ 318 & 0.332 \\ \hline \end{array} \][/tex]
1. Calculate [tex]\( \frac{1}{T} \)[/tex]:
[tex]\[ \frac{1}{T} \text {(in K}^{-1}) \text{ for each temperature is:} \][/tex]
[tex]\[ \frac{1}{288} = 0.003472 \, \text{K}^{-1} \][/tex]
[tex]\[ \frac{1}{298} = 0.003356 \, \text{K}^{-1} \][/tex]
[tex]\[ \frac{1}{308} = 0.003247 \, \text{K}^{-1} \][/tex]
[tex]\[ \frac{1}{318} = 0.003145 \, \text{K}^{-1} \][/tex]
2. Calculate [tex]\( \ln(k) \)[/tex]:
[tex]\[ \ln(0.0521) = -2.955 \][/tex]
[tex]\[ \ln(0.101) = -2.293 \][/tex]
[tex]\[ \ln(0.184) = -1.693 \][/tex]
[tex]\[ \ln(0.332) = -1.103 \][/tex]
So, the transformed data is:
[tex]\[ \begin{array}{|c|c|} \hline \frac{1}{T} (K^{-1}) & \ln(k) \\ \hline 0.003472 & -2.955 \\ 0.003356 & -2.293 \\ 0.003247 & -1.693 \\ 0.003145 & -1.103 \\ \hline \end{array} \][/tex]
#### Creating the Linear Plot
Using Excel or any graphing tool, plot [tex]\( \ln(k) \)[/tex] (y-axis) vs. [tex]\( \frac{1}{T} \)[/tex] (x-axis).
1. Labeling:
- Title: Arrhenius Plot
- x-axis: [tex]\( \frac{1}{T} \)[/tex] (K[tex]\(^{-1}\)[/tex])
- y-axis: [tex]\( \ln(k) \)[/tex]
2. Plot the Data Points and Add Linear Fit:
- Display the equation of the line on the graph.
The equation of the line should look something like this (based on linear regression trendline):
[tex]\[ \ln k = -5638.34 \left(\frac{1}{T}\right) + 16.6231 \][/tex]
### Part B: Calculating Activation Energy [tex]\( E_a \)[/tex]
From the equation of the line generated from plotting the data, we have:
[tex]\[ \ln k = -\frac{E_a}{R} \left(\frac{1}{T}\right) + \ln A \][/tex]
Comparing this with the equation of our line:
[tex]\[ \ln k = -5638.34 \left(\frac{1}{T}\right) + 16.6231 \][/tex]
The slope of the line is [tex]\(-5638.34\)[/tex], and it is equal to [tex]\(-\frac{E_a}{R}\)[/tex].
1. Calculate [tex]\( E_a \)[/tex]:
[tex]\[ -5638.34 = -\frac{E_a}{R} \][/tex]
[tex]\[ 5638.34 = \frac{E_a}{8.314} \][/tex]
[tex]\[ E_a = 5638.34 \times 8.314 = 46877.16 \, \text{J/mol} \][/tex]
2. Convert [tex]\( E_a \)[/tex] to kJ/mol:
[tex]\[ E_a (kJ/mol) = \frac{46877.16}{1000} = 46.877 \, \text{kJ/mol} \][/tex]
### Part C: Determining the Order of the Reaction
From the units of the rate constant [tex]\( k \)[/tex]:
- The units of [tex]\( k \)[/tex] are [tex]\( M^{-1} s^{-1} \)[/tex].
For a reaction of order [tex]\( n \)[/tex]:
[tex]\[ \text{Rate Constant (k)} \text{ units} = \left( \text{Concentration} \right)^{1-n} \left( \text{Time} \right)^{-1} = \left(M^{1-n}\right)s^{-1} \][/tex]
Given that [tex]\( k \)[/tex] has units [tex]\( M^{-1} s^{-1} \)[/tex]:
- Thus, [tex]\( 1-n = -1 \)[/tex]
- This implies that [tex]\( n = 2 \)[/tex].
The reaction is second order.
Rate Law Expression for a second-order reaction:
[tex]\[ \text{Rate} = k[B]^2 \][/tex]
### Summary
- Transformed data and created a linear plot with the equation of the line as [tex]\( \ln k = -5638.34 \left(\frac{1}{T}\right) + 16.6231 \)[/tex].
- Calculated the activation energy [tex]\( E_a \)[/tex] to be [tex]\( 46.877 \, \text{kJ/mol} \)[/tex].
- Determined that the reaction is second order with the rate law expression: [tex]\( \text{Rate} = k[B]^2 \)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.