At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Certainly! Let's go through the solution step-by-step.
### Part A: Transforming the Data and Creating a Linear Plot
To begin with, let's transform the given data and then create a linear plot.
#### Transforming the Data
We have the temperature data [tex]\( T \)[/tex] and the rate constants [tex]\( k \)[/tex] as follows:
[tex]\[ \begin{array}{|c|c|} \hline T (K) & k (M^{-1}s^{-1}) \\ \hline 288 & 0.0521 \\ 298 & 0.101 \\ 308 & 0.184 \\ 318 & 0.332 \\ \hline \end{array} \][/tex]
1. Calculate [tex]\( \frac{1}{T} \)[/tex]:
[tex]\[ \frac{1}{T} \text {(in K}^{-1}) \text{ for each temperature is:} \][/tex]
[tex]\[ \frac{1}{288} = 0.003472 \, \text{K}^{-1} \][/tex]
[tex]\[ \frac{1}{298} = 0.003356 \, \text{K}^{-1} \][/tex]
[tex]\[ \frac{1}{308} = 0.003247 \, \text{K}^{-1} \][/tex]
[tex]\[ \frac{1}{318} = 0.003145 \, \text{K}^{-1} \][/tex]
2. Calculate [tex]\( \ln(k) \)[/tex]:
[tex]\[ \ln(0.0521) = -2.955 \][/tex]
[tex]\[ \ln(0.101) = -2.293 \][/tex]
[tex]\[ \ln(0.184) = -1.693 \][/tex]
[tex]\[ \ln(0.332) = -1.103 \][/tex]
So, the transformed data is:
[tex]\[ \begin{array}{|c|c|} \hline \frac{1}{T} (K^{-1}) & \ln(k) \\ \hline 0.003472 & -2.955 \\ 0.003356 & -2.293 \\ 0.003247 & -1.693 \\ 0.003145 & -1.103 \\ \hline \end{array} \][/tex]
#### Creating the Linear Plot
Using Excel or any graphing tool, plot [tex]\( \ln(k) \)[/tex] (y-axis) vs. [tex]\( \frac{1}{T} \)[/tex] (x-axis).
1. Labeling:
- Title: Arrhenius Plot
- x-axis: [tex]\( \frac{1}{T} \)[/tex] (K[tex]\(^{-1}\)[/tex])
- y-axis: [tex]\( \ln(k) \)[/tex]
2. Plot the Data Points and Add Linear Fit:
- Display the equation of the line on the graph.
The equation of the line should look something like this (based on linear regression trendline):
[tex]\[ \ln k = -5638.34 \left(\frac{1}{T}\right) + 16.6231 \][/tex]
### Part B: Calculating Activation Energy [tex]\( E_a \)[/tex]
From the equation of the line generated from plotting the data, we have:
[tex]\[ \ln k = -\frac{E_a}{R} \left(\frac{1}{T}\right) + \ln A \][/tex]
Comparing this with the equation of our line:
[tex]\[ \ln k = -5638.34 \left(\frac{1}{T}\right) + 16.6231 \][/tex]
The slope of the line is [tex]\(-5638.34\)[/tex], and it is equal to [tex]\(-\frac{E_a}{R}\)[/tex].
1. Calculate [tex]\( E_a \)[/tex]:
[tex]\[ -5638.34 = -\frac{E_a}{R} \][/tex]
[tex]\[ 5638.34 = \frac{E_a}{8.314} \][/tex]
[tex]\[ E_a = 5638.34 \times 8.314 = 46877.16 \, \text{J/mol} \][/tex]
2. Convert [tex]\( E_a \)[/tex] to kJ/mol:
[tex]\[ E_a (kJ/mol) = \frac{46877.16}{1000} = 46.877 \, \text{kJ/mol} \][/tex]
### Part C: Determining the Order of the Reaction
From the units of the rate constant [tex]\( k \)[/tex]:
- The units of [tex]\( k \)[/tex] are [tex]\( M^{-1} s^{-1} \)[/tex].
For a reaction of order [tex]\( n \)[/tex]:
[tex]\[ \text{Rate Constant (k)} \text{ units} = \left( \text{Concentration} \right)^{1-n} \left( \text{Time} \right)^{-1} = \left(M^{1-n}\right)s^{-1} \][/tex]
Given that [tex]\( k \)[/tex] has units [tex]\( M^{-1} s^{-1} \)[/tex]:
- Thus, [tex]\( 1-n = -1 \)[/tex]
- This implies that [tex]\( n = 2 \)[/tex].
The reaction is second order.
Rate Law Expression for a second-order reaction:
[tex]\[ \text{Rate} = k[B]^2 \][/tex]
### Summary
- Transformed data and created a linear plot with the equation of the line as [tex]\( \ln k = -5638.34 \left(\frac{1}{T}\right) + 16.6231 \)[/tex].
- Calculated the activation energy [tex]\( E_a \)[/tex] to be [tex]\( 46.877 \, \text{kJ/mol} \)[/tex].
- Determined that the reaction is second order with the rate law expression: [tex]\( \text{Rate} = k[B]^2 \)[/tex].
### Part A: Transforming the Data and Creating a Linear Plot
To begin with, let's transform the given data and then create a linear plot.
#### Transforming the Data
We have the temperature data [tex]\( T \)[/tex] and the rate constants [tex]\( k \)[/tex] as follows:
[tex]\[ \begin{array}{|c|c|} \hline T (K) & k (M^{-1}s^{-1}) \\ \hline 288 & 0.0521 \\ 298 & 0.101 \\ 308 & 0.184 \\ 318 & 0.332 \\ \hline \end{array} \][/tex]
1. Calculate [tex]\( \frac{1}{T} \)[/tex]:
[tex]\[ \frac{1}{T} \text {(in K}^{-1}) \text{ for each temperature is:} \][/tex]
[tex]\[ \frac{1}{288} = 0.003472 \, \text{K}^{-1} \][/tex]
[tex]\[ \frac{1}{298} = 0.003356 \, \text{K}^{-1} \][/tex]
[tex]\[ \frac{1}{308} = 0.003247 \, \text{K}^{-1} \][/tex]
[tex]\[ \frac{1}{318} = 0.003145 \, \text{K}^{-1} \][/tex]
2. Calculate [tex]\( \ln(k) \)[/tex]:
[tex]\[ \ln(0.0521) = -2.955 \][/tex]
[tex]\[ \ln(0.101) = -2.293 \][/tex]
[tex]\[ \ln(0.184) = -1.693 \][/tex]
[tex]\[ \ln(0.332) = -1.103 \][/tex]
So, the transformed data is:
[tex]\[ \begin{array}{|c|c|} \hline \frac{1}{T} (K^{-1}) & \ln(k) \\ \hline 0.003472 & -2.955 \\ 0.003356 & -2.293 \\ 0.003247 & -1.693 \\ 0.003145 & -1.103 \\ \hline \end{array} \][/tex]
#### Creating the Linear Plot
Using Excel or any graphing tool, plot [tex]\( \ln(k) \)[/tex] (y-axis) vs. [tex]\( \frac{1}{T} \)[/tex] (x-axis).
1. Labeling:
- Title: Arrhenius Plot
- x-axis: [tex]\( \frac{1}{T} \)[/tex] (K[tex]\(^{-1}\)[/tex])
- y-axis: [tex]\( \ln(k) \)[/tex]
2. Plot the Data Points and Add Linear Fit:
- Display the equation of the line on the graph.
The equation of the line should look something like this (based on linear regression trendline):
[tex]\[ \ln k = -5638.34 \left(\frac{1}{T}\right) + 16.6231 \][/tex]
### Part B: Calculating Activation Energy [tex]\( E_a \)[/tex]
From the equation of the line generated from plotting the data, we have:
[tex]\[ \ln k = -\frac{E_a}{R} \left(\frac{1}{T}\right) + \ln A \][/tex]
Comparing this with the equation of our line:
[tex]\[ \ln k = -5638.34 \left(\frac{1}{T}\right) + 16.6231 \][/tex]
The slope of the line is [tex]\(-5638.34\)[/tex], and it is equal to [tex]\(-\frac{E_a}{R}\)[/tex].
1. Calculate [tex]\( E_a \)[/tex]:
[tex]\[ -5638.34 = -\frac{E_a}{R} \][/tex]
[tex]\[ 5638.34 = \frac{E_a}{8.314} \][/tex]
[tex]\[ E_a = 5638.34 \times 8.314 = 46877.16 \, \text{J/mol} \][/tex]
2. Convert [tex]\( E_a \)[/tex] to kJ/mol:
[tex]\[ E_a (kJ/mol) = \frac{46877.16}{1000} = 46.877 \, \text{kJ/mol} \][/tex]
### Part C: Determining the Order of the Reaction
From the units of the rate constant [tex]\( k \)[/tex]:
- The units of [tex]\( k \)[/tex] are [tex]\( M^{-1} s^{-1} \)[/tex].
For a reaction of order [tex]\( n \)[/tex]:
[tex]\[ \text{Rate Constant (k)} \text{ units} = \left( \text{Concentration} \right)^{1-n} \left( \text{Time} \right)^{-1} = \left(M^{1-n}\right)s^{-1} \][/tex]
Given that [tex]\( k \)[/tex] has units [tex]\( M^{-1} s^{-1} \)[/tex]:
- Thus, [tex]\( 1-n = -1 \)[/tex]
- This implies that [tex]\( n = 2 \)[/tex].
The reaction is second order.
Rate Law Expression for a second-order reaction:
[tex]\[ \text{Rate} = k[B]^2 \][/tex]
### Summary
- Transformed data and created a linear plot with the equation of the line as [tex]\( \ln k = -5638.34 \left(\frac{1}{T}\right) + 16.6231 \)[/tex].
- Calculated the activation energy [tex]\( E_a \)[/tex] to be [tex]\( 46.877 \, \text{kJ/mol} \)[/tex].
- Determined that the reaction is second order with the rate law expression: [tex]\( \text{Rate} = k[B]^2 \)[/tex].
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.