Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's find the image of the point [tex]\((0, 0)\)[/tex] after two reflections, first across the line [tex]\(y = 3\)[/tex] and then across the [tex]\(x\)[/tex]-axis.
1. First Reflection across the line [tex]\( y = 3 \)[/tex]:
When reflecting a point [tex]\((x, y)\)[/tex] across a horizontal line [tex]\( y = k \)[/tex], the rule is: [tex]\[ (x, y) \rightarrow (x, 2k - y) \][/tex]
For our specific case:
- The point is [tex]\((0, 0)\)[/tex].
- The line of reflection is [tex]\( y = 3 \)[/tex].
- Using the reflection rule: [tex]\[ (0, 0) \rightarrow (0, 2(3) - 0) = (0, 6) \][/tex]
So, after the first reflection, the point [tex]\((0, 0)\)[/tex] transforms to [tex]\((0, 6)\)[/tex].
2. Second Reflection across the [tex]\( x \)[/tex]-axis:
Reflecting a point [tex]\((x, y)\)[/tex] across the [tex]\( x \)[/tex]-axis involves the rule: [tex]\[ (x, y) \rightarrow (x, -y) \][/tex]
Applying this rule to our new point [tex]\((0, 6)\)[/tex]:
- The point is [tex]\((0, 6)\)[/tex].
- Reflecting across the [tex]\( x \)[/tex]-axis: [tex]\[ (0, 6) \rightarrow (0, -6) \][/tex]
So, after the second reflection, the point [tex]\((0, 6)\)[/tex] transforms to [tex]\((0, -6)\)[/tex].
Hence, the image of the point [tex]\((0, 0)\)[/tex] after the two reflections is [tex]\((0, -6)\)[/tex].
Therefore, the final result is [tex]\((0, 6)\)[/tex] after the first reflection and [tex]\((0, -6)\)[/tex] after the second reflection.
1. First Reflection across the line [tex]\( y = 3 \)[/tex]:
When reflecting a point [tex]\((x, y)\)[/tex] across a horizontal line [tex]\( y = k \)[/tex], the rule is: [tex]\[ (x, y) \rightarrow (x, 2k - y) \][/tex]
For our specific case:
- The point is [tex]\((0, 0)\)[/tex].
- The line of reflection is [tex]\( y = 3 \)[/tex].
- Using the reflection rule: [tex]\[ (0, 0) \rightarrow (0, 2(3) - 0) = (0, 6) \][/tex]
So, after the first reflection, the point [tex]\((0, 0)\)[/tex] transforms to [tex]\((0, 6)\)[/tex].
2. Second Reflection across the [tex]\( x \)[/tex]-axis:
Reflecting a point [tex]\((x, y)\)[/tex] across the [tex]\( x \)[/tex]-axis involves the rule: [tex]\[ (x, y) \rightarrow (x, -y) \][/tex]
Applying this rule to our new point [tex]\((0, 6)\)[/tex]:
- The point is [tex]\((0, 6)\)[/tex].
- Reflecting across the [tex]\( x \)[/tex]-axis: [tex]\[ (0, 6) \rightarrow (0, -6) \][/tex]
So, after the second reflection, the point [tex]\((0, 6)\)[/tex] transforms to [tex]\((0, -6)\)[/tex].
Hence, the image of the point [tex]\((0, 0)\)[/tex] after the two reflections is [tex]\((0, -6)\)[/tex].
Therefore, the final result is [tex]\((0, 6)\)[/tex] after the first reflection and [tex]\((0, -6)\)[/tex] after the second reflection.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.