Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the image of the point [tex]\((0,0)\)[/tex] after two reflections, first across the [tex]\(x\)[/tex]-axis and then across the [tex]\(y\)[/tex]-axis, we can proceed as follows:
1. Reflection across the [tex]\(x\)[/tex]-axis:
The reflection of a point [tex]\((x, y)\)[/tex] across the [tex]\(x\)[/tex]-axis changes its coordinates to [tex]\((x, -y)\)[/tex]. This means we only change the sign of the [tex]\(y\)[/tex]-coordinate while keeping the [tex]\(x\)[/tex]-coordinate the same.
Let's consider the given point [tex]\((0,0)\)[/tex]:
- Reflecting [tex]\((0,0)\)[/tex] across the [tex]\(x\)[/tex]-axis:
[tex]\[ (0, 0) \rightarrow (0, -0) = (0, 0) \][/tex]
So, after the reflection across the [tex]\(x\)[/tex]-axis, the coordinates remain [tex]\((0,0)\)[/tex].
2. Reflection across the [tex]\(y\)[/tex]-axis:
The reflection of a point [tex]\((x, y)\)[/tex] across the [tex]\(y\)[/tex]-axis changes its coordinates to [tex]\((-x, y)\)[/tex]. This means we only change the sign of the [tex]\(x\)[/tex]-coordinate while keeping the [tex]\(y\)[/tex]-coordinate the same.
Now, consider the point obtained from the previous step, which is [tex]\((0,0)\)[/tex]:
- Reflecting [tex]\((0,0)\)[/tex] across the [tex]\(y\)[/tex]-axis:
[tex]\[ (0, 0) \rightarrow (-0, 0) = (0, 0) \][/tex]
Again, the coordinates remain [tex]\((0,0)\)[/tex].
Therefore, the image of the point [tex]\((0,0)\)[/tex] after reflecting first across the [tex]\(x\)[/tex]-axis and then across the [tex]\(y\)[/tex]-axis is [tex]\((0,0)\)[/tex].
1. Reflection across the [tex]\(x\)[/tex]-axis:
The reflection of a point [tex]\((x, y)\)[/tex] across the [tex]\(x\)[/tex]-axis changes its coordinates to [tex]\((x, -y)\)[/tex]. This means we only change the sign of the [tex]\(y\)[/tex]-coordinate while keeping the [tex]\(x\)[/tex]-coordinate the same.
Let's consider the given point [tex]\((0,0)\)[/tex]:
- Reflecting [tex]\((0,0)\)[/tex] across the [tex]\(x\)[/tex]-axis:
[tex]\[ (0, 0) \rightarrow (0, -0) = (0, 0) \][/tex]
So, after the reflection across the [tex]\(x\)[/tex]-axis, the coordinates remain [tex]\((0,0)\)[/tex].
2. Reflection across the [tex]\(y\)[/tex]-axis:
The reflection of a point [tex]\((x, y)\)[/tex] across the [tex]\(y\)[/tex]-axis changes its coordinates to [tex]\((-x, y)\)[/tex]. This means we only change the sign of the [tex]\(x\)[/tex]-coordinate while keeping the [tex]\(y\)[/tex]-coordinate the same.
Now, consider the point obtained from the previous step, which is [tex]\((0,0)\)[/tex]:
- Reflecting [tex]\((0,0)\)[/tex] across the [tex]\(y\)[/tex]-axis:
[tex]\[ (0, 0) \rightarrow (-0, 0) = (0, 0) \][/tex]
Again, the coordinates remain [tex]\((0,0)\)[/tex].
Therefore, the image of the point [tex]\((0,0)\)[/tex] after reflecting first across the [tex]\(x\)[/tex]-axis and then across the [tex]\(y\)[/tex]-axis is [tex]\((0,0)\)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.