Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

What is [tex][tex]$\sqrt[4]{7^3}$[/tex][/tex] in exponential form?

A. [tex][tex]$7^{\frac{3}{4}}$[/tex][/tex]
B. [tex][tex]$7^{\frac{4}{3}}$[/tex][/tex]
C. [tex][tex]$7^{-\frac{4}{3}}$[/tex][/tex]


Sagot :

To express the radical form [tex]\(\sqrt[4]{7^3}\)[/tex] in exponential form, we need to understand how to convert from radical notation to exponential notation.

Recall that the [tex]\( n \)[/tex]-th root of a number [tex]\( a \)[/tex] can be written in exponential form as [tex]\( a^{\frac{1}{n}} \)[/tex]. In this specific example, we have the 4th root of [tex]\( 7^3 \)[/tex].

1. The 4th root of a number [tex]\( x \)[/tex] can be written as [tex]\( x^{\frac{1}{4}} \)[/tex].
2. Therefore, the 4th root of [tex]\( 7^3 \)[/tex] can be written as [tex]\( (7^3)^{\frac{1}{4}} \)[/tex].

Next, we use the property of exponents which states that [tex]\((a^m)^n = a^{m \cdot n}\)[/tex].

3. Applying this property, we have:
[tex]\[ (7^3)^{\frac{1}{4}} = 7^{3 \cdot \frac{1}{4}} = 7^{\frac{3}{4}} \][/tex]

Therefore, the correct exponential form of [tex]\(\sqrt[4]{7^3}\)[/tex] is [tex]\( 7^{\frac{3}{4}} \)[/tex].

To verify our result, let's consider the numerical value of [tex]\( 7^{\frac{3}{4}} \)[/tex].

4. [tex]\( 7^{\frac{3}{4}} \)[/tex] is approximately [tex]\( 4.303517070658851 \)[/tex].

This value also confirms our calculation, as it matches the numerical result provided.

Thus, the exponential form of [tex]\(\sqrt[4]{7^3}\)[/tex] is:
[tex]\[ 7^{\frac{3}{4}} \][/tex]

So the correct answer is:
[tex]\[ \boxed{7^{\frac{3}{4}}} \][/tex]