Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine if the integral
[tex]\[ \int_0^1 \frac{1}{x^2+\sqrt{x}} \, dx \][/tex]
converges without actually evaluating it, we can use the Direct Comparison Test. Here’s a detailed, step-by-step solution:
### Step 1: Identify and analyze the integrand
Given the function inside the integral is:
[tex]\[ f(x) = \frac{1}{x^2 + \sqrt{x}} \][/tex]
This function is continuous for [tex]\( x \)[/tex] in the interval [tex]\([0, 1]\)[/tex] except at [tex]\( x = 0 \)[/tex]. To apply the Direct Comparison Test, we seek a simpler function [tex]\(g(x)\)[/tex] such that [tex]\(f(x) \leq g(x)\)[/tex] and [tex]\(g(x)\)[/tex] is easier to integrate and analyze over the interval [tex]\([0, 1]\)[/tex].
### Step 2: Identify a suitable comparison function
We observe the behavior of [tex]\(x^2\)[/tex] and [tex]\(\sqrt{x}\)[/tex] on the interval [tex]\([0, 1]\)[/tex]:
1. For [tex]\( 0 \leq x < 1 \)[/tex], [tex]\(x^2\)[/tex] is always non-negative and thus [tex]\(\sqrt{x}\)[/tex] provides the dominant term in the denominator near [tex]\(x = 0\)[/tex].
2. We need a function [tex]\(g(x)\)[/tex] that is greater than or equal to [tex]\(\frac{1}{x^2 + \sqrt{x}}\)[/tex].
Let’s consider:
[tex]\[ g(x) = \frac{1}{\sqrt{x}} \][/tex]
since [tex]\(x^2 \geq 0\)[/tex] for [tex]\(x \in [0, 1]\)[/tex], it follows that:
[tex]\[ x^2 + \sqrt{x} \geq \sqrt{x} \][/tex]
Therefore,
[tex]\[ \frac{1}{x^2 + \sqrt{x}} \leq \frac{1}{\sqrt{x}} \][/tex]
for [tex]\(0 < x \leq 1\)[/tex].
### Step 3: Examine the comparison integral
We now evaluate whether the comparison integral converges:
[tex]\[ \int_0^1 \frac{1}{\sqrt{x}} \, dx \][/tex]
To integrate [tex]\(\frac{1}{\sqrt{x}}\)[/tex]:
[tex]\[ \int_0^1 \frac{1}{\sqrt{x}} \, dx = \int_0^1 x^{-\frac{1}{2}} \, dx \][/tex]
This simplifies to:
[tex]\[ \left[ 2x^{\frac{1}{2}} \right]_0^1 = 2 \left[ x^{\frac{1}{2}} \right]_0^1 = 2 \left( 1^{\frac{1}{2}} - 0^{\frac{1}{2}} \right) = 2(1) = 2 \][/tex]
Since the integral [tex]\(\int_0^1 \frac{1}{\sqrt{x}} \, dx\)[/tex] converges to a finite value, it provides an upper bound for [tex]\(\frac{1}{x^2 + \sqrt{x}}\)[/tex].
### Step 4: Apply the Direct Comparison Test
By the Direct Comparison Test:
- Since [tex]\( \frac{1}{x^2 + \sqrt{x}} \leq \frac{1}{\sqrt{x}} \)[/tex] for [tex]\(0 < x \leq 1\)[/tex], and
- The integral [tex]\(\int_0^1 \frac{1}{\sqrt{x}} \, dx\)[/tex] converges,
we can conclude that:
[tex]\[ \int_0^1 \frac{1}{x^2 + \sqrt{x}} \, dx \][/tex]
also converges.
Thus, based on the Direct Comparison Test, we have shown that the integral [tex]\(\int_0^1 \frac{1}{x^2 + \sqrt{x}} \, dx\)[/tex] converges.
[tex]\[ \int_0^1 \frac{1}{x^2+\sqrt{x}} \, dx \][/tex]
converges without actually evaluating it, we can use the Direct Comparison Test. Here’s a detailed, step-by-step solution:
### Step 1: Identify and analyze the integrand
Given the function inside the integral is:
[tex]\[ f(x) = \frac{1}{x^2 + \sqrt{x}} \][/tex]
This function is continuous for [tex]\( x \)[/tex] in the interval [tex]\([0, 1]\)[/tex] except at [tex]\( x = 0 \)[/tex]. To apply the Direct Comparison Test, we seek a simpler function [tex]\(g(x)\)[/tex] such that [tex]\(f(x) \leq g(x)\)[/tex] and [tex]\(g(x)\)[/tex] is easier to integrate and analyze over the interval [tex]\([0, 1]\)[/tex].
### Step 2: Identify a suitable comparison function
We observe the behavior of [tex]\(x^2\)[/tex] and [tex]\(\sqrt{x}\)[/tex] on the interval [tex]\([0, 1]\)[/tex]:
1. For [tex]\( 0 \leq x < 1 \)[/tex], [tex]\(x^2\)[/tex] is always non-negative and thus [tex]\(\sqrt{x}\)[/tex] provides the dominant term in the denominator near [tex]\(x = 0\)[/tex].
2. We need a function [tex]\(g(x)\)[/tex] that is greater than or equal to [tex]\(\frac{1}{x^2 + \sqrt{x}}\)[/tex].
Let’s consider:
[tex]\[ g(x) = \frac{1}{\sqrt{x}} \][/tex]
since [tex]\(x^2 \geq 0\)[/tex] for [tex]\(x \in [0, 1]\)[/tex], it follows that:
[tex]\[ x^2 + \sqrt{x} \geq \sqrt{x} \][/tex]
Therefore,
[tex]\[ \frac{1}{x^2 + \sqrt{x}} \leq \frac{1}{\sqrt{x}} \][/tex]
for [tex]\(0 < x \leq 1\)[/tex].
### Step 3: Examine the comparison integral
We now evaluate whether the comparison integral converges:
[tex]\[ \int_0^1 \frac{1}{\sqrt{x}} \, dx \][/tex]
To integrate [tex]\(\frac{1}{\sqrt{x}}\)[/tex]:
[tex]\[ \int_0^1 \frac{1}{\sqrt{x}} \, dx = \int_0^1 x^{-\frac{1}{2}} \, dx \][/tex]
This simplifies to:
[tex]\[ \left[ 2x^{\frac{1}{2}} \right]_0^1 = 2 \left[ x^{\frac{1}{2}} \right]_0^1 = 2 \left( 1^{\frac{1}{2}} - 0^{\frac{1}{2}} \right) = 2(1) = 2 \][/tex]
Since the integral [tex]\(\int_0^1 \frac{1}{\sqrt{x}} \, dx\)[/tex] converges to a finite value, it provides an upper bound for [tex]\(\frac{1}{x^2 + \sqrt{x}}\)[/tex].
### Step 4: Apply the Direct Comparison Test
By the Direct Comparison Test:
- Since [tex]\( \frac{1}{x^2 + \sqrt{x}} \leq \frac{1}{\sqrt{x}} \)[/tex] for [tex]\(0 < x \leq 1\)[/tex], and
- The integral [tex]\(\int_0^1 \frac{1}{\sqrt{x}} \, dx\)[/tex] converges,
we can conclude that:
[tex]\[ \int_0^1 \frac{1}{x^2 + \sqrt{x}} \, dx \][/tex]
also converges.
Thus, based on the Direct Comparison Test, we have shown that the integral [tex]\(\int_0^1 \frac{1}{x^2 + \sqrt{x}} \, dx\)[/tex] converges.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.