Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine which of the given expressions represents the volume of a cylinder, we must recall the formula for the volume of a cylinder. The volume [tex]\( V \)[/tex] of a cylinder with radius [tex]\( r \)[/tex] and height [tex]\( h \)[/tex] is given by:
[tex]\[ V = \pi r^2 h \][/tex]
In this context, suppose the radius [tex]\( r \)[/tex] is denoted by [tex]\( x \)[/tex] and the height [tex]\( h \)[/tex] is also denoted by [tex]\( x \)[/tex]. Then, the volume formula becomes:
[tex]\[ V = \pi x^2 \cdot x \][/tex]
[tex]\[ V = \pi x^3 \][/tex]
We need to identify which of the given expressions matches the form [tex]\( \pi x^3 \)[/tex].
1. [tex]\( 3 \pi x^2 + 4 \pi x + 16 \pi \)[/tex]
- This expression does not match [tex]\( \pi x^3 \)[/tex]; it contains terms with [tex]\( x^2 \)[/tex], [tex]\( x \)[/tex], and a constant term.
2. [tex]\( 3 \pi x^2 + 16 \pi \)[/tex]
- This expression also does not match [tex]\( \pi x^3 \)[/tex]; it consists of terms with [tex]\( x^2 \)[/tex] and a constant.
3. [tex]\( 3 \pi x^3 + 32 \pi \)[/tex]
- This expression includes a term [tex]\( 3 \pi x^3 \)[/tex] plus a constant term. Notice that the coefficient of [tex]\( x^3 \)[/tex] is 3, not 1. While it contains [tex]\( \pi x^3 \)[/tex], it is actually multiplied by 3.
4. [tex]\( 3 \pi x^3 + 20 \pi x^2 + 44 \pi x + 32 \pi \)[/tex]
- This expression contains multiple terms with different powers of [tex]\( x \)[/tex] and does not match the simple form [tex]\( \pi x^3 \)[/tex].
Among the given expressions, option 3, [tex]\( 3 \pi x^3 + 32 \pi \)[/tex], includes the term [tex]\( 3 \pi x^3 \)[/tex]. It suggests a connection to the volume formula [tex]\( \pi x^3 \)[/tex], albeit scaled by a constant.
Thus, the expression that includes the term matching the volume formula under given assumptions is:
[tex]\[ 3 \pi x^3 + 32 \pi \][/tex]
Therefore, the correct answer is:
[tex]\[ 3 \pi x^3 + 32 \pi \][/tex]
Which corresponds to the third option.
[tex]\[ V = \pi r^2 h \][/tex]
In this context, suppose the radius [tex]\( r \)[/tex] is denoted by [tex]\( x \)[/tex] and the height [tex]\( h \)[/tex] is also denoted by [tex]\( x \)[/tex]. Then, the volume formula becomes:
[tex]\[ V = \pi x^2 \cdot x \][/tex]
[tex]\[ V = \pi x^3 \][/tex]
We need to identify which of the given expressions matches the form [tex]\( \pi x^3 \)[/tex].
1. [tex]\( 3 \pi x^2 + 4 \pi x + 16 \pi \)[/tex]
- This expression does not match [tex]\( \pi x^3 \)[/tex]; it contains terms with [tex]\( x^2 \)[/tex], [tex]\( x \)[/tex], and a constant term.
2. [tex]\( 3 \pi x^2 + 16 \pi \)[/tex]
- This expression also does not match [tex]\( \pi x^3 \)[/tex]; it consists of terms with [tex]\( x^2 \)[/tex] and a constant.
3. [tex]\( 3 \pi x^3 + 32 \pi \)[/tex]
- This expression includes a term [tex]\( 3 \pi x^3 \)[/tex] plus a constant term. Notice that the coefficient of [tex]\( x^3 \)[/tex] is 3, not 1. While it contains [tex]\( \pi x^3 \)[/tex], it is actually multiplied by 3.
4. [tex]\( 3 \pi x^3 + 20 \pi x^2 + 44 \pi x + 32 \pi \)[/tex]
- This expression contains multiple terms with different powers of [tex]\( x \)[/tex] and does not match the simple form [tex]\( \pi x^3 \)[/tex].
Among the given expressions, option 3, [tex]\( 3 \pi x^3 + 32 \pi \)[/tex], includes the term [tex]\( 3 \pi x^3 \)[/tex]. It suggests a connection to the volume formula [tex]\( \pi x^3 \)[/tex], albeit scaled by a constant.
Thus, the expression that includes the term matching the volume formula under given assumptions is:
[tex]\[ 3 \pi x^3 + 32 \pi \][/tex]
Therefore, the correct answer is:
[tex]\[ 3 \pi x^3 + 32 \pi \][/tex]
Which corresponds to the third option.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.