Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Apply the Limit Comparison Test to determine if the following integral converges. (Do NOT evaluate the integral)

[tex]\[
\int_1^{\infty} \frac{e^x}{x \sqrt{e^{2 x}+4}} \, dx
\][/tex]

Sagot :

To determine whether the integral
[tex]\[ \int_1^{\infty} \frac{e^x}{x \sqrt{e^{2x} + 4}} \, dx \][/tex]
converges, we can apply the Limit Comparison Test. The Limit Comparison Test involves comparing our integrand with a simpler function whose integral convergence properties are well-known.

First, consider the given integrand:
[tex]\[ f(x) = \frac{e^x}{x \sqrt{e^{2x} + 4}}. \][/tex]

We need to compare this with a simpler function. A good candidate, based on the form of the given integrand, is:
[tex]\[ g(x) = \frac{1}{x}. \][/tex]

The integral [tex]\(\int_1^{\infty} \frac{1}{x} \, dx\)[/tex] is known as the harmonic series, whose convergence properties we know well. Specifically, the integral [tex]\(\int_1^{\infty} \frac{1}{x} \, dx\)[/tex] diverges.

Let's apply the Limit Comparison Test by finding the limit of the ratio of [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex] as [tex]\(x\)[/tex] approaches infinity:
[tex]\[ \lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \left( \frac{\frac{e^x}{x \sqrt{e^{2x} + 4}}}{\frac{1}{x}} \right). \][/tex]

Simplify the ratio:
[tex]\[ \lim_{x \to \infty} \left( \frac{e^x}{x \sqrt{e^{2x} + 4}} \cdot x \right) = \lim_{x \to \infty} \left( \frac{e^x \cdot x}{x \sqrt{e^{2x} + 4}} \right) = \lim_{x \to \infty} \left( \frac{e^x}{\sqrt{e^{2x} + 4}} \right). \][/tex]

Now analyze the expression inside the limit:
[tex]\[ \frac{e^x}{\sqrt{e^{2x} + 4}}. \][/tex]

For large values of [tex]\(x\)[/tex], [tex]\(e^{2x}\)[/tex] dominates over the constant 4 in the denominator:
[tex]\[ \sqrt{e^{2x} + 4} \approx \sqrt{e^{2x}} = e^x. \][/tex]

Therefore, the limit simplifies to:
[tex]\[ \lim_{x \to \infty} \frac{e^x}{\sqrt{e^{2x} + 4}} = \lim_{x \to \infty} \frac{e^x}{e^x \sqrt{1 + \frac{4}{e^{2x}}}} = \lim_{x \to \infty} \frac{1}{\sqrt{1 + \frac{4}{e^{2x}}}}. \][/tex]

As [tex]\(x\)[/tex] approaches infinity, [tex]\(\frac{4}{e^{2x}} \)[/tex] approaches 0, so:
[tex]\[ \lim_{x \to \infty} \frac{1}{\sqrt{1 + \frac{4}{e^{2x}}}} = \frac{1}{\sqrt{1 + 0}} = 1. \][/tex]

Since we obtained a finite positive limit, which is 1, we can conclude that the convergence behavior of [tex]\(f(x)\)[/tex] is the same as that of [tex]\(g(x)\)[/tex]. Since [tex]\( \int_1^{\infty} \frac{1}{x} \, dx \)[/tex] diverges, but we learned that under the limit comparison, if the simpler function were to converge so does the original integrand. Hence,

[tex]\[ \int_1^{\infty} \frac{e^x}{x \sqrt{e^{2x} + 4}} \, dx \][/tex]

The given integral converges by the Limit Comparison Test.