Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine whether the given integral
[tex]\[ \int_1^{\infty} \frac{e^x}{x \sqrt{e^{2x} + 4}} \, dx \][/tex]
converges or diverges, we will use the Limit Comparison Test.
Firstly, let's identify an appropriate function [tex]\( g(x) \)[/tex] to compare with our function
[tex]\[ f(x) = \frac{e^x}{x \sqrt{e^{2x} + 4}}. \][/tex]
Since [tex]\( e^{2x} \)[/tex] grows much faster than 4 as [tex]\( x \)[/tex] approaches infinity, for large [tex]\( x \)[/tex], [tex]\( e^{2x} + 4 \approx e^{2x} \)[/tex].
Thus, we can approximate [tex]\( f(x) \)[/tex] by:
[tex]\[ f(x) \approx \frac{e^x}{x \sqrt{e^{2x}}} = \frac{e^x}{x e^x} = \frac{1}{x}. \][/tex]
So, let's choose [tex]\( g(x) = \frac{1}{x} \)[/tex]. This function is simpler to work with and easier to compare.
Now, let's apply the Limit Comparison Test by finding the limit of the ratio of [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] as [tex]\( x \)[/tex] approaches infinity:
[tex]\[ \lim_{x \to \infty} \frac{f(x)}{g(x)}. \][/tex]
Substitute [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex]:
[tex]\[ \lim_{x \to \infty} \frac{\frac{e^x}{x \sqrt{e^{2x} + 4}}}{\frac{1}{x}} = \lim_{x \to \infty} \frac{e^x}{x \sqrt{e^{2x} + 4}} \cdot x = \lim_{x \to \infty} \frac{e^x \cdot x}{x \sqrt{e^{2x} + 4}} = \lim_{x \to \infty} \frac{e^x}{\sqrt{e^{2x} + 4}}. \][/tex]
Next, we simplify the denominator:
[tex]\[ e^{2x} + 4 \approx e^{2x} \text{ for large } x. \][/tex]
Hence:
[tex]\[ \sqrt{e^{2x} + 4} \approx \sqrt{e^{2x}} = e^x. \][/tex]
So:
[tex]\[ \lim_{x \to \infty} \frac{e^x}{\sqrt{e^{2x} + 4}} \approx \lim_{x \to \infty} \frac{e^x}{e^x} = \lim_{x \to \infty} 1 = 1. \][/tex]
Since the limit is a positive finite number (in this case, 1), the Limit Comparison Test tells us that [tex]\( \int_1^{\infty} \frac{e^x}{x \sqrt{e^{2x} + 4}} \, dx \)[/tex] will converge or diverge together with [tex]\( \int_1^{\infty} \frac{1}{x} \, dx \)[/tex].
We know that:
[tex]\[ \int_1^{\infty} \frac{1}{x} \, dx \][/tex]
is a divergent integral (it is the integral of [tex]\( \frac{1}{x} \)[/tex] from 1 to infinity, which is a well-known divergent integral).
Therefore, by the Limit Comparison Test, the given integral:
[tex]\[ \int_1^{\infty} \frac{e^x}{x \sqrt{e^{2x} + 4}} \, dx \][/tex]
also diverges.
[tex]\[ \int_1^{\infty} \frac{e^x}{x \sqrt{e^{2x} + 4}} \, dx \][/tex]
converges or diverges, we will use the Limit Comparison Test.
Firstly, let's identify an appropriate function [tex]\( g(x) \)[/tex] to compare with our function
[tex]\[ f(x) = \frac{e^x}{x \sqrt{e^{2x} + 4}}. \][/tex]
Since [tex]\( e^{2x} \)[/tex] grows much faster than 4 as [tex]\( x \)[/tex] approaches infinity, for large [tex]\( x \)[/tex], [tex]\( e^{2x} + 4 \approx e^{2x} \)[/tex].
Thus, we can approximate [tex]\( f(x) \)[/tex] by:
[tex]\[ f(x) \approx \frac{e^x}{x \sqrt{e^{2x}}} = \frac{e^x}{x e^x} = \frac{1}{x}. \][/tex]
So, let's choose [tex]\( g(x) = \frac{1}{x} \)[/tex]. This function is simpler to work with and easier to compare.
Now, let's apply the Limit Comparison Test by finding the limit of the ratio of [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] as [tex]\( x \)[/tex] approaches infinity:
[tex]\[ \lim_{x \to \infty} \frac{f(x)}{g(x)}. \][/tex]
Substitute [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex]:
[tex]\[ \lim_{x \to \infty} \frac{\frac{e^x}{x \sqrt{e^{2x} + 4}}}{\frac{1}{x}} = \lim_{x \to \infty} \frac{e^x}{x \sqrt{e^{2x} + 4}} \cdot x = \lim_{x \to \infty} \frac{e^x \cdot x}{x \sqrt{e^{2x} + 4}} = \lim_{x \to \infty} \frac{e^x}{\sqrt{e^{2x} + 4}}. \][/tex]
Next, we simplify the denominator:
[tex]\[ e^{2x} + 4 \approx e^{2x} \text{ for large } x. \][/tex]
Hence:
[tex]\[ \sqrt{e^{2x} + 4} \approx \sqrt{e^{2x}} = e^x. \][/tex]
So:
[tex]\[ \lim_{x \to \infty} \frac{e^x}{\sqrt{e^{2x} + 4}} \approx \lim_{x \to \infty} \frac{e^x}{e^x} = \lim_{x \to \infty} 1 = 1. \][/tex]
Since the limit is a positive finite number (in this case, 1), the Limit Comparison Test tells us that [tex]\( \int_1^{\infty} \frac{e^x}{x \sqrt{e^{2x} + 4}} \, dx \)[/tex] will converge or diverge together with [tex]\( \int_1^{\infty} \frac{1}{x} \, dx \)[/tex].
We know that:
[tex]\[ \int_1^{\infty} \frac{1}{x} \, dx \][/tex]
is a divergent integral (it is the integral of [tex]\( \frac{1}{x} \)[/tex] from 1 to infinity, which is a well-known divergent integral).
Therefore, by the Limit Comparison Test, the given integral:
[tex]\[ \int_1^{\infty} \frac{e^x}{x \sqrt{e^{2x} + 4}} \, dx \][/tex]
also diverges.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.