Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine which of the following expressions is a monomial, let's start by figuring out what a monomial is.
A monomial is a single term consisting of a constant, a variable, or the product of a constant and one or more variables raised to non-negative integer exponents. In other words, a monomial cannot have multiple terms, fractions with variables in the denominator, or negative exponents.
Let's evaluate each option:
Option A: [tex]\( 20x^9 \)[/tex]
- This expression is a single term.
- It consists of a constant (20) and a variable (x) raised to a non-negative integer exponent (9).
- Therefore, [tex]\( 20x^9 \)[/tex] is a monomial.
Option B: [tex]\( 20x^9 - 7x \)[/tex]
- This expression has two terms: [tex]\( 20x^9 \)[/tex] and [tex]\(-7x\)[/tex].
- Since a monomial can have only one term, [tex]\( 20x^9 - 7x \)[/tex] is not a monomial.
Option C: [tex]\( \frac{9}{x} \)[/tex]
- This expression involves a variable (x) in the denominator.
- A monomial cannot have a variable in the denominator.
- Therefore, [tex]\( \frac{9}{x} \)[/tex] is not a monomial.
Option D: [tex]\( 11x - 9 \)[/tex]
- This expression has two terms: [tex]\( 11x \)[/tex] and [tex]\(-9\)[/tex].
- Since a monomial can have only one term, [tex]\( 11x - 9 \)[/tex] is not a monomial.
Given this analysis, the correct answer is Option A, [tex]\( 20x^9 \)[/tex], as it is the only expression that meets the criteria of being a monomial.
A monomial is a single term consisting of a constant, a variable, or the product of a constant and one or more variables raised to non-negative integer exponents. In other words, a monomial cannot have multiple terms, fractions with variables in the denominator, or negative exponents.
Let's evaluate each option:
Option A: [tex]\( 20x^9 \)[/tex]
- This expression is a single term.
- It consists of a constant (20) and a variable (x) raised to a non-negative integer exponent (9).
- Therefore, [tex]\( 20x^9 \)[/tex] is a monomial.
Option B: [tex]\( 20x^9 - 7x \)[/tex]
- This expression has two terms: [tex]\( 20x^9 \)[/tex] and [tex]\(-7x\)[/tex].
- Since a monomial can have only one term, [tex]\( 20x^9 - 7x \)[/tex] is not a monomial.
Option C: [tex]\( \frac{9}{x} \)[/tex]
- This expression involves a variable (x) in the denominator.
- A monomial cannot have a variable in the denominator.
- Therefore, [tex]\( \frac{9}{x} \)[/tex] is not a monomial.
Option D: [tex]\( 11x - 9 \)[/tex]
- This expression has two terms: [tex]\( 11x \)[/tex] and [tex]\(-9\)[/tex].
- Since a monomial can have only one term, [tex]\( 11x - 9 \)[/tex] is not a monomial.
Given this analysis, the correct answer is Option A, [tex]\( 20x^9 \)[/tex], as it is the only expression that meets the criteria of being a monomial.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.