Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine which expression correctly uses the formula [tex]\(\left(\frac{m}{m+n}\right)(x_2 - x_1) + x_1\)[/tex] to find the location of point [tex]\( R \)[/tex], let’s revisit the problem details and align them with the formula variables.
Given:
- Points [tex]\( Q \)[/tex] and [tex]\( S \)[/tex] are at [tex]\(-8\)[/tex] and [tex]\(12\)[/tex] respectively on the number line.
- The segment [tex]\( QS \)[/tex] is partitioned by point [tex]\( R \)[/tex] in a [tex]\(4:1\)[/tex] ratio.
In the formula:
- [tex]\( m \)[/tex] and [tex]\( n \)[/tex] represent the ratio in which the segment is divided. Here, [tex]\( m = 4 \)[/tex] and [tex]\( n = 1 \)[/tex].
- [tex]\( x_1 \)[/tex] and [tex]\( x_2 \)[/tex] are the coordinates of points [tex]\( Q \)[/tex] and [tex]\( S \)[/tex] respectively. Thus, [tex]\( x_1 = -8 \)[/tex] and [tex]\( x_2 = 12 \)[/tex].
Now, insert these values into the formula:
[tex]\[ \left(\frac{m}{m+n}\right)(x_2 - x_1) + x_1 = \left(\frac{4}{4+1}\right)(12 - (-8)) + (-8) \][/tex]
Simplifying the expression:
1. Calculate the sum in the denominator: [tex]\( 4 + 1 = 5 \)[/tex].
2. Compute the difference: [tex]\( 12 - (-8) = 12 + 8 = 20 \)[/tex].
3. Calculate the ratio: [tex]\( \frac{4}{5} \)[/tex].
4. Multiply by the difference: [tex]\( \frac{4}{5} \times 20 = 16 \)[/tex].
5. Add this product to [tex]\( x_1 \)[/tex]: [tex]\( 16 + (-8) = 8 \)[/tex].
Therefore, the correct expression is:
[tex]\[ \left( \frac{4}{4+1} \right)(12 - (-8)) + (-8) \][/tex]
Given:
- Points [tex]\( Q \)[/tex] and [tex]\( S \)[/tex] are at [tex]\(-8\)[/tex] and [tex]\(12\)[/tex] respectively on the number line.
- The segment [tex]\( QS \)[/tex] is partitioned by point [tex]\( R \)[/tex] in a [tex]\(4:1\)[/tex] ratio.
In the formula:
- [tex]\( m \)[/tex] and [tex]\( n \)[/tex] represent the ratio in which the segment is divided. Here, [tex]\( m = 4 \)[/tex] and [tex]\( n = 1 \)[/tex].
- [tex]\( x_1 \)[/tex] and [tex]\( x_2 \)[/tex] are the coordinates of points [tex]\( Q \)[/tex] and [tex]\( S \)[/tex] respectively. Thus, [tex]\( x_1 = -8 \)[/tex] and [tex]\( x_2 = 12 \)[/tex].
Now, insert these values into the formula:
[tex]\[ \left(\frac{m}{m+n}\right)(x_2 - x_1) + x_1 = \left(\frac{4}{4+1}\right)(12 - (-8)) + (-8) \][/tex]
Simplifying the expression:
1. Calculate the sum in the denominator: [tex]\( 4 + 1 = 5 \)[/tex].
2. Compute the difference: [tex]\( 12 - (-8) = 12 + 8 = 20 \)[/tex].
3. Calculate the ratio: [tex]\( \frac{4}{5} \)[/tex].
4. Multiply by the difference: [tex]\( \frac{4}{5} \times 20 = 16 \)[/tex].
5. Add this product to [tex]\( x_1 \)[/tex]: [tex]\( 16 + (-8) = 8 \)[/tex].
Therefore, the correct expression is:
[tex]\[ \left( \frac{4}{4+1} \right)(12 - (-8)) + (-8) \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.