Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the mass of [tex]\( \text{H}_2\text{O} \)[/tex] produced when 10.0 grams of [tex]\( \text{H}_2 \)[/tex] reacts completely with 80.0 grams of [tex]\( \text{O}_2 \)[/tex], follow these steps:
1. Calculate the moles of [tex]\( \text{H}_2 \)[/tex] and [tex]\( \text{O}_2 \)[/tex] given their masses and molar masses.
- Molar mass of [tex]\( \text{H}_2 \)[/tex] (Hydrogen gas) is [tex]\( 2.016 \, \text{g/mol} \)[/tex].
- Molar mass of [tex]\( \text{O}_2 \)[/tex] (Oxygen gas) is [tex]\( 32.00 \, \text{g/mol} \)[/tex].
For [tex]\( 10.0 \, \text{g} \)[/tex] of [tex]\( \text{H}_2 \)[/tex]:
[tex]\[ \text{Moles of } H_2 = \frac{10.0 \, \text{g}}{2.016 \, \text{g/mol}} = 4.9603174603174605 \, \text{mol} \][/tex]
For [tex]\( 80.0 \, \text{g} \)[/tex] of [tex]\( \text{O}_2 \)[/tex]:
[tex]\[ \text{Moles of } O_2 = \frac{80.0 \, \text{g}}{32.00 \, \text{g/mol}} = 2.5 \, \text{mol} \][/tex]
2. Use the balanced chemical equation to determine the limiting reactant.
The balanced reaction equation is:
[tex]\[ 2 H_2 + O_2 \rightarrow 2 H_2O \][/tex]
According to the equation, 2 moles of [tex]\( \text{H}_2 \)[/tex] react with 1 mole of [tex]\( \text{O}_2 \)[/tex]. Therefore, the moles of [tex]\( \text{H}_2 \)[/tex] required to react with [tex]\( \text{O}_2 \)[/tex] are:
[tex]\[ \text{Moles of } H_2 \text{ required} = 2 \times (\text{Moles of } O_2) = 2 \times 2.5 = 5.0 \, \text{mol} \][/tex]
However, we only have [tex]\( 4.9603174603174605 \)[/tex] moles of [tex]\( \text{H}_2 \)[/tex], which means [tex]\( \text{H}_2 \)[/tex] is the limiting reactant.
3. Calculate the moles of [tex]\( \text{H}_2\text{O} \)[/tex] produced.
From the balanced equation:
[tex]\[ 2 H_2 \rightarrow 2 H_2O \][/tex]
This implies the moles of [tex]\( \text{H}_2\text{O} \)[/tex] produced are equal to the moles of [tex]\( \text{H}_2 \)[/tex] used. Therefore, the moles of [tex]\( \text{H}_2\text{O} \)[/tex] produced are:
[tex]\[ \text{Moles of } H_2O = \frac{\text{Moles of } H_2}{2} \times 2 = 4.9603174603174605 \, \text{mol} \][/tex]
4. Calculate the mass of [tex]\( \text{H}_2\text{O} \)[/tex] produced.
- The molar mass of [tex]\( \text{H}_2\text{O} \)[/tex] (Water) is [tex]\( 18.016 \, \text{g/mol} \)[/tex].
Therefore, the mass of [tex]\( \text{H}_2\text{O} \)[/tex] produced is:
[tex]\[ \text{Mass of } H_2O = \text{Moles of } H_2O \times \text{Molar mass of } H_2O = 4.9603174603174605 \, \text{mol} \times 18.016 \, \text{g/mol} = 89.36507936507935 \, \text{g} \][/tex]
Given the choices, the closest and most reasonable matching option is [tex]\( 90.0 \, \text{g} \)[/tex].
Hence, the correct answer is:
[tex]\[ \boxed{90.0 \, \text{g}} \][/tex]
1. Calculate the moles of [tex]\( \text{H}_2 \)[/tex] and [tex]\( \text{O}_2 \)[/tex] given their masses and molar masses.
- Molar mass of [tex]\( \text{H}_2 \)[/tex] (Hydrogen gas) is [tex]\( 2.016 \, \text{g/mol} \)[/tex].
- Molar mass of [tex]\( \text{O}_2 \)[/tex] (Oxygen gas) is [tex]\( 32.00 \, \text{g/mol} \)[/tex].
For [tex]\( 10.0 \, \text{g} \)[/tex] of [tex]\( \text{H}_2 \)[/tex]:
[tex]\[ \text{Moles of } H_2 = \frac{10.0 \, \text{g}}{2.016 \, \text{g/mol}} = 4.9603174603174605 \, \text{mol} \][/tex]
For [tex]\( 80.0 \, \text{g} \)[/tex] of [tex]\( \text{O}_2 \)[/tex]:
[tex]\[ \text{Moles of } O_2 = \frac{80.0 \, \text{g}}{32.00 \, \text{g/mol}} = 2.5 \, \text{mol} \][/tex]
2. Use the balanced chemical equation to determine the limiting reactant.
The balanced reaction equation is:
[tex]\[ 2 H_2 + O_2 \rightarrow 2 H_2O \][/tex]
According to the equation, 2 moles of [tex]\( \text{H}_2 \)[/tex] react with 1 mole of [tex]\( \text{O}_2 \)[/tex]. Therefore, the moles of [tex]\( \text{H}_2 \)[/tex] required to react with [tex]\( \text{O}_2 \)[/tex] are:
[tex]\[ \text{Moles of } H_2 \text{ required} = 2 \times (\text{Moles of } O_2) = 2 \times 2.5 = 5.0 \, \text{mol} \][/tex]
However, we only have [tex]\( 4.9603174603174605 \)[/tex] moles of [tex]\( \text{H}_2 \)[/tex], which means [tex]\( \text{H}_2 \)[/tex] is the limiting reactant.
3. Calculate the moles of [tex]\( \text{H}_2\text{O} \)[/tex] produced.
From the balanced equation:
[tex]\[ 2 H_2 \rightarrow 2 H_2O \][/tex]
This implies the moles of [tex]\( \text{H}_2\text{O} \)[/tex] produced are equal to the moles of [tex]\( \text{H}_2 \)[/tex] used. Therefore, the moles of [tex]\( \text{H}_2\text{O} \)[/tex] produced are:
[tex]\[ \text{Moles of } H_2O = \frac{\text{Moles of } H_2}{2} \times 2 = 4.9603174603174605 \, \text{mol} \][/tex]
4. Calculate the mass of [tex]\( \text{H}_2\text{O} \)[/tex] produced.
- The molar mass of [tex]\( \text{H}_2\text{O} \)[/tex] (Water) is [tex]\( 18.016 \, \text{g/mol} \)[/tex].
Therefore, the mass of [tex]\( \text{H}_2\text{O} \)[/tex] produced is:
[tex]\[ \text{Mass of } H_2O = \text{Moles of } H_2O \times \text{Molar mass of } H_2O = 4.9603174603174605 \, \text{mol} \times 18.016 \, \text{g/mol} = 89.36507936507935 \, \text{g} \][/tex]
Given the choices, the closest and most reasonable matching option is [tex]\( 90.0 \, \text{g} \)[/tex].
Hence, the correct answer is:
[tex]\[ \boxed{90.0 \, \text{g}} \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.