Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Evaluate the following improper integrals:

(a) [tex][tex]$\int_0^{\infty} \frac{e^{-x}}{1+e^{-x}} d x$[/tex][/tex]

(b) [tex][tex]$\int_1^2 \frac{1}{\sqrt{x-1}} d x$[/tex][/tex]


Sagot :

Certainly! Let's look at these improper integrals step-by-step.

### Part (a) [tex]\(\int_0^{\infty} \frac{e^{-x}}{1+e^{-x}} \,dx\)[/tex]

1. We begin with the integrand function:
[tex]\[ \frac{e^{-x}}{1 + e^{-x}} \][/tex]

2. This integrand can be simplified by noting a substitution. Let [tex]\( u = e^{-x} \)[/tex]. Hence, [tex]\( du = -e^{-x} \, dx = -u \, dx \)[/tex]. When [tex]\( x \to 0 \)[/tex], [tex]\( u \to 1 \)[/tex], and when [tex]\( x \to \infty \)[/tex], [tex]\( u \to 0 \)[/tex].

3. Rewrite the integral in terms of [tex]\( u \)[/tex]:
[tex]\[ \int_0^{\infty} \frac{e^{-x}}{1 + e^{-x}} \, dx = \int_1^{0} \frac{u}{1+u} \cdot \left( -\frac{1}{u} \, du \right) = \int_1^0 \frac{1}{1+u} \, du \][/tex]

4. Switching the limits of integration changes the sign:
[tex]\[ \int_1^0 \frac{1}{1+u} \, du = -\int_0^1 \frac{1}{1+u} \, du \][/tex]

5. This becomes a standard integral of the form:
[tex]\[ \int_0^1 \frac{1}{1+u} \, du = [ \log(1+u) ]_0^1 \][/tex]

6. Evaluating this definite integral:
[tex]\[ \log(1+1) - \log(1+0) = \log(2) - \log(1) = \log(2) \][/tex]

Thus, the result for part (a) is:
[tex]\[ \int_0^{\infty} \frac{e^{-x}}{1+e^{-x}} \,dx = \log(2) \][/tex]


### Part (b) [tex]\(\int_1^2 \frac{1}{\sqrt{x-1}} \,dx\)[/tex]

1. We start with the integrand function:
[tex]\[ \frac{1}{\sqrt{x-1}} \][/tex]

2. This is an improper integral because the integrand becomes infinite at the lower limit of integration [tex]\( x = 1 \)[/tex]. We can solve it by making a substitution [tex]\( u = x - 1 \)[/tex]. Hence, [tex]\( du = dx \)[/tex]. When [tex]\( x \to 1 \)[/tex], [tex]\( u \to 0 \)[/tex], and when [tex]\( x \to 2 \)[/tex], [tex]\( u \to 1 \)[/tex].

3. Rewrite the integral in terms of [tex]\( u \)[/tex]:
[tex]\[ \int_1^2 \frac{1}{\sqrt{x-1}} \, dx = \int_0^1 \frac{1}{\sqrt{u}} \, du \][/tex]

4. This becomes a standard integral:
[tex]\[ \int_0^1 u^{-\frac{1}{2}} \, du \][/tex]

5. Integrate using the power rule:
[tex]\[ \int_0^1 u^{-\frac{1}{2}} \, du = \left[ \frac{u^{\frac{1}{2}}}{\frac{1}{2}} \right]_0^1 = \left[ 2u^{\frac{1}{2}} \right]_0^1 \][/tex]

6. Evaluating this definite integral gives:
[tex]\[ 2(1^{\frac{1}{2}}) - 2(0^{\frac{1}{2}}) = 2(1) - 2(0) = 2 \][/tex]

Thus, the result for part (b) is:
[tex]\[ \int_1^2 \frac{1}{\sqrt{x-1}} \,dx = 2 \][/tex]

### Summary

The values of the improper integrals are:
[tex]\[ \text{(a)} \int_0^{\infty} \frac{e^{-x}}{1+e^{-x}} \,dx = \log(2) \][/tex]
[tex]\[ \text{(b)} \int_1^2 \frac{1}{\sqrt{x-1}} \,dx = 2 \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.