Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Certainly! Let's look at these improper integrals step-by-step.
### Part (a) [tex]\(\int_0^{\infty} \frac{e^{-x}}{1+e^{-x}} \,dx\)[/tex]
1. We begin with the integrand function:
[tex]\[ \frac{e^{-x}}{1 + e^{-x}} \][/tex]
2. This integrand can be simplified by noting a substitution. Let [tex]\( u = e^{-x} \)[/tex]. Hence, [tex]\( du = -e^{-x} \, dx = -u \, dx \)[/tex]. When [tex]\( x \to 0 \)[/tex], [tex]\( u \to 1 \)[/tex], and when [tex]\( x \to \infty \)[/tex], [tex]\( u \to 0 \)[/tex].
3. Rewrite the integral in terms of [tex]\( u \)[/tex]:
[tex]\[ \int_0^{\infty} \frac{e^{-x}}{1 + e^{-x}} \, dx = \int_1^{0} \frac{u}{1+u} \cdot \left( -\frac{1}{u} \, du \right) = \int_1^0 \frac{1}{1+u} \, du \][/tex]
4. Switching the limits of integration changes the sign:
[tex]\[ \int_1^0 \frac{1}{1+u} \, du = -\int_0^1 \frac{1}{1+u} \, du \][/tex]
5. This becomes a standard integral of the form:
[tex]\[ \int_0^1 \frac{1}{1+u} \, du = [ \log(1+u) ]_0^1 \][/tex]
6. Evaluating this definite integral:
[tex]\[ \log(1+1) - \log(1+0) = \log(2) - \log(1) = \log(2) \][/tex]
Thus, the result for part (a) is:
[tex]\[ \int_0^{\infty} \frac{e^{-x}}{1+e^{-x}} \,dx = \log(2) \][/tex]
### Part (b) [tex]\(\int_1^2 \frac{1}{\sqrt{x-1}} \,dx\)[/tex]
1. We start with the integrand function:
[tex]\[ \frac{1}{\sqrt{x-1}} \][/tex]
2. This is an improper integral because the integrand becomes infinite at the lower limit of integration [tex]\( x = 1 \)[/tex]. We can solve it by making a substitution [tex]\( u = x - 1 \)[/tex]. Hence, [tex]\( du = dx \)[/tex]. When [tex]\( x \to 1 \)[/tex], [tex]\( u \to 0 \)[/tex], and when [tex]\( x \to 2 \)[/tex], [tex]\( u \to 1 \)[/tex].
3. Rewrite the integral in terms of [tex]\( u \)[/tex]:
[tex]\[ \int_1^2 \frac{1}{\sqrt{x-1}} \, dx = \int_0^1 \frac{1}{\sqrt{u}} \, du \][/tex]
4. This becomes a standard integral:
[tex]\[ \int_0^1 u^{-\frac{1}{2}} \, du \][/tex]
5. Integrate using the power rule:
[tex]\[ \int_0^1 u^{-\frac{1}{2}} \, du = \left[ \frac{u^{\frac{1}{2}}}{\frac{1}{2}} \right]_0^1 = \left[ 2u^{\frac{1}{2}} \right]_0^1 \][/tex]
6. Evaluating this definite integral gives:
[tex]\[ 2(1^{\frac{1}{2}}) - 2(0^{\frac{1}{2}}) = 2(1) - 2(0) = 2 \][/tex]
Thus, the result for part (b) is:
[tex]\[ \int_1^2 \frac{1}{\sqrt{x-1}} \,dx = 2 \][/tex]
### Summary
The values of the improper integrals are:
[tex]\[ \text{(a)} \int_0^{\infty} \frac{e^{-x}}{1+e^{-x}} \,dx = \log(2) \][/tex]
[tex]\[ \text{(b)} \int_1^2 \frac{1}{\sqrt{x-1}} \,dx = 2 \][/tex]
### Part (a) [tex]\(\int_0^{\infty} \frac{e^{-x}}{1+e^{-x}} \,dx\)[/tex]
1. We begin with the integrand function:
[tex]\[ \frac{e^{-x}}{1 + e^{-x}} \][/tex]
2. This integrand can be simplified by noting a substitution. Let [tex]\( u = e^{-x} \)[/tex]. Hence, [tex]\( du = -e^{-x} \, dx = -u \, dx \)[/tex]. When [tex]\( x \to 0 \)[/tex], [tex]\( u \to 1 \)[/tex], and when [tex]\( x \to \infty \)[/tex], [tex]\( u \to 0 \)[/tex].
3. Rewrite the integral in terms of [tex]\( u \)[/tex]:
[tex]\[ \int_0^{\infty} \frac{e^{-x}}{1 + e^{-x}} \, dx = \int_1^{0} \frac{u}{1+u} \cdot \left( -\frac{1}{u} \, du \right) = \int_1^0 \frac{1}{1+u} \, du \][/tex]
4. Switching the limits of integration changes the sign:
[tex]\[ \int_1^0 \frac{1}{1+u} \, du = -\int_0^1 \frac{1}{1+u} \, du \][/tex]
5. This becomes a standard integral of the form:
[tex]\[ \int_0^1 \frac{1}{1+u} \, du = [ \log(1+u) ]_0^1 \][/tex]
6. Evaluating this definite integral:
[tex]\[ \log(1+1) - \log(1+0) = \log(2) - \log(1) = \log(2) \][/tex]
Thus, the result for part (a) is:
[tex]\[ \int_0^{\infty} \frac{e^{-x}}{1+e^{-x}} \,dx = \log(2) \][/tex]
### Part (b) [tex]\(\int_1^2 \frac{1}{\sqrt{x-1}} \,dx\)[/tex]
1. We start with the integrand function:
[tex]\[ \frac{1}{\sqrt{x-1}} \][/tex]
2. This is an improper integral because the integrand becomes infinite at the lower limit of integration [tex]\( x = 1 \)[/tex]. We can solve it by making a substitution [tex]\( u = x - 1 \)[/tex]. Hence, [tex]\( du = dx \)[/tex]. When [tex]\( x \to 1 \)[/tex], [tex]\( u \to 0 \)[/tex], and when [tex]\( x \to 2 \)[/tex], [tex]\( u \to 1 \)[/tex].
3. Rewrite the integral in terms of [tex]\( u \)[/tex]:
[tex]\[ \int_1^2 \frac{1}{\sqrt{x-1}} \, dx = \int_0^1 \frac{1}{\sqrt{u}} \, du \][/tex]
4. This becomes a standard integral:
[tex]\[ \int_0^1 u^{-\frac{1}{2}} \, du \][/tex]
5. Integrate using the power rule:
[tex]\[ \int_0^1 u^{-\frac{1}{2}} \, du = \left[ \frac{u^{\frac{1}{2}}}{\frac{1}{2}} \right]_0^1 = \left[ 2u^{\frac{1}{2}} \right]_0^1 \][/tex]
6. Evaluating this definite integral gives:
[tex]\[ 2(1^{\frac{1}{2}}) - 2(0^{\frac{1}{2}}) = 2(1) - 2(0) = 2 \][/tex]
Thus, the result for part (b) is:
[tex]\[ \int_1^2 \frac{1}{\sqrt{x-1}} \,dx = 2 \][/tex]
### Summary
The values of the improper integrals are:
[tex]\[ \text{(a)} \int_0^{\infty} \frac{e^{-x}}{1+e^{-x}} \,dx = \log(2) \][/tex]
[tex]\[ \text{(b)} \int_1^2 \frac{1}{\sqrt{x-1}} \,dx = 2 \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.