Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the length of the swing using the given swing period and the pendulum formula, follow these steps:
1. Identify the given values:
- Period of the swing ([tex]\( T \)[/tex]) = 3.1 seconds
- Acceleration due to gravity ([tex]\( g \)[/tex]) = 32 feet per second squared
2. Recall the pendulum formula:
[tex]\[ T = 2 \pi \sqrt{\frac{L}{g}} \][/tex]
3. Rearrange the formula to solve for [tex]\( L \)[/tex]:
First, isolate the square root by dividing both sides by [tex]\(2\pi\)[/tex]:
[tex]\[ \frac{T}{2\pi} = \sqrt{\frac{L}{g}} \][/tex]
Next, square both sides to get rid of the square root:
[tex]\[ \left(\frac{T}{2\pi}\right)^2 = \frac{L}{g} \][/tex]
Finally, solve for [tex]\( L \)[/tex] by multiplying both sides by [tex]\( g \)[/tex]:
[tex]\[ L = \left(\frac{T}{2\pi}\right)^2 \times g \][/tex]
4. Substitute the known values into the equation:
[tex]\[ L = \left(\frac{3.1}{2\pi}\right)^2 \times 32 \][/tex]
5. Calculate the value step-by-step:
- Calculate [tex]\(2\pi\)[/tex]:
[tex]\[ 2\pi \approx 6.2832 \][/tex]
- Divide [tex]\(T\)[/tex] by [tex]\(2\pi\)[/tex]:
[tex]\[ \frac{3.1}{6.2832} \approx 0.4934 \][/tex]
- Square the result:
[tex]\[ (0.4934)^2 \approx 0.2435 \][/tex]
- Multiply by [tex]\( g \)[/tex] (32):
[tex]\[ 0.2435 \times 32 \approx 7.792 \][/tex]
6. Round the final result to the nearest tenth:
[tex]\[ 7.792 \approx 7.8 \][/tex]
Therefore, the length of the swing is 7.8 feet.
Thus, the correct answer is:
A. 7.8 feet
1. Identify the given values:
- Period of the swing ([tex]\( T \)[/tex]) = 3.1 seconds
- Acceleration due to gravity ([tex]\( g \)[/tex]) = 32 feet per second squared
2. Recall the pendulum formula:
[tex]\[ T = 2 \pi \sqrt{\frac{L}{g}} \][/tex]
3. Rearrange the formula to solve for [tex]\( L \)[/tex]:
First, isolate the square root by dividing both sides by [tex]\(2\pi\)[/tex]:
[tex]\[ \frac{T}{2\pi} = \sqrt{\frac{L}{g}} \][/tex]
Next, square both sides to get rid of the square root:
[tex]\[ \left(\frac{T}{2\pi}\right)^2 = \frac{L}{g} \][/tex]
Finally, solve for [tex]\( L \)[/tex] by multiplying both sides by [tex]\( g \)[/tex]:
[tex]\[ L = \left(\frac{T}{2\pi}\right)^2 \times g \][/tex]
4. Substitute the known values into the equation:
[tex]\[ L = \left(\frac{3.1}{2\pi}\right)^2 \times 32 \][/tex]
5. Calculate the value step-by-step:
- Calculate [tex]\(2\pi\)[/tex]:
[tex]\[ 2\pi \approx 6.2832 \][/tex]
- Divide [tex]\(T\)[/tex] by [tex]\(2\pi\)[/tex]:
[tex]\[ \frac{3.1}{6.2832} \approx 0.4934 \][/tex]
- Square the result:
[tex]\[ (0.4934)^2 \approx 0.2435 \][/tex]
- Multiply by [tex]\( g \)[/tex] (32):
[tex]\[ 0.2435 \times 32 \approx 7.792 \][/tex]
6. Round the final result to the nearest tenth:
[tex]\[ 7.792 \approx 7.8 \][/tex]
Therefore, the length of the swing is 7.8 feet.
Thus, the correct answer is:
A. 7.8 feet
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.