Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Fully factorize the expression:

[tex]\[ 5x - 16x - 10 + 6x^2 \][/tex]


Sagot :

To fully factorize the expression [tex]\( 5x - 16x - 10 + 6x^2 \)[/tex], follow these steps:

1. Simplify the Expression:
Combine like terms in the polynomial.
[tex]\[ 5x - 16x - 10 + 6x^2 \][/tex]
First, combine the [tex]\(x\)[/tex]-terms:
[tex]\[ 5x - 16x = -11x \][/tex]
So, the expression simplifies to:
[tex]\[ 6x^2 - 11x - 10 \][/tex]

2. Factorize the Quadratic Expression:
We now need to factorize the quadratic polynomial [tex]\( 6x^2 - 11x - 10 \)[/tex].

To do this, we look for two binomials of the form [tex]\( (ax + b)(cx + d) \)[/tex] that multiply to give [tex]\( 6x^2 - 11x - 10 \)[/tex].

Notice if we write:
[tex]\[ (2x - 5)(3x + 2) \][/tex]
We can verify this by expanding the binomials:
[tex]\[ (2x - 5)(3x + 2) = 2x \cdot 3x + 2x \cdot 2 - 5 \cdot 3x - 5 \cdot 2 = 6x^2 + 4x - 15x - 10 = 6x^2 - 11x - 10 \][/tex]
This matches our simplified quadratic expression.

Therefore, the fully factorized form of the expression [tex]\( 5x - 16x - 10 + 6x^2 \)[/tex] is:
[tex]\[ (2x - 5)(3x + 2) \][/tex]