Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

Find the coordinates of the point which divides the line segment joining the points [tex]\((-1,4)\)[/tex] and [tex]\((0,-3)\)[/tex] in the ratio [tex]\(\frac{1}{4}\)[/tex] internally.

Sagot :

To find the coordinates of the point that divides the line segment joining the points [tex]\((-1, 4)\)[/tex] and [tex]\((0, -3)\)[/tex] in the ratio [tex]\(1:4\)[/tex] internally, we use the section formula for internal division. The section formula states that if a point [tex]\(P(x, y)\)[/tex] divides the line segment joining the points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] in the ratio [tex]\(m:n\)[/tex], then the coordinates of point [tex]\(P\)[/tex] are given by:

[tex]\[ x = \frac{mx_2 + nx_1}{m+n} \][/tex]

[tex]\[ y = \frac{my_2 + ny_1}{m+n} \][/tex]

Here, the coordinates of the points are:
[tex]\[ (x_1, y_1) = (-1, 4) \][/tex]
[tex]\[ (x_2, y_2) = (0, -3) \][/tex]

The ratio in which the line segment is divided is:
[tex]\[ m:n = 1:4 \][/tex]
So, [tex]\(m = 1\)[/tex] and [tex]\(n = 4\)[/tex].

We will first find the x-coordinate:
[tex]\[ x = \frac{m \cdot x_2 + n \cdot x_1}{m+n} = \frac{1 \cdot 0 + 4 \cdot (-1)}{1+4} = \frac{0 - 4}{5} = \frac{-4}{5} = -0.8 \][/tex]

Next, we find the y-coordinate:
[tex]\[ y = \frac{m \cdot y_2 + n \cdot y_1}{m+n} = \frac{1 \cdot (-3) + 4 \cdot 4}{1+4} = \frac{-3 + 16}{5} = \frac{13}{5} = 2.6 \][/tex]

Thus, the coordinates of the point that divides the line segment joining [tex]\((-1, 4)\)[/tex] and [tex]\(0, -3)\)[/tex] in the ratio [tex]\(1:4\)[/tex] internally are [tex]\((-0.8, 2.6)\)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.