Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To factor the expression [tex]\(x^3 y^3 + 343\)[/tex] using the sum of cubes formula, follow these steps:
1. Recognize the Sum of Cubes Formula:
The sum of cubes formula states:
[tex]\[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \][/tex]
2. Identify [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:
Look at the original expression [tex]\(x^3 y^3 + 343\)[/tex]. We need to match it to the sum of cubes formula.
- Notice that [tex]\(x^3 y^3\)[/tex] can be written as [tex]\((xy)^3\)[/tex]. Hence, we can let [tex]\(a = xy\)[/tex].
- Observe that 343 is a perfect cube, specifically [tex]\(7^3\)[/tex]. Therefore, we can let [tex]\(b = 7\)[/tex].
3. Apply the Formula:
- We can now express [tex]\(a\)[/tex] and [tex]\(b\)[/tex] in the sum of cubes formula:
[tex]\[ (xy)^3 + 7^3 = (xy + 7)((xy)^2 - (xy)(7) + 7^2) \][/tex]
4. Simplify the Inner Expression:
- Simplify each component inside the second factor:
- [tex]\((xy)^2 = x^2 y^2\)[/tex]
- [tex]\((xy)(7) = 7xy\)[/tex]
- [tex]\(7^2 = 49\)[/tex]
5. Rewrite the Factors:
- With these simplifications, rewrite the factors as follows:
[tex]\[ (xy + 7)(x^2 y^2 - 7xy + 49) \][/tex]
By identifying the appropriate values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex], and substituting into the sum of cubes formula, we factorized [tex]\(x^3 y^3 + 343\)[/tex].
1. Recognize the Sum of Cubes Formula:
The sum of cubes formula states:
[tex]\[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \][/tex]
2. Identify [tex]\(a\)[/tex] and [tex]\(b\)[/tex]:
Look at the original expression [tex]\(x^3 y^3 + 343\)[/tex]. We need to match it to the sum of cubes formula.
- Notice that [tex]\(x^3 y^3\)[/tex] can be written as [tex]\((xy)^3\)[/tex]. Hence, we can let [tex]\(a = xy\)[/tex].
- Observe that 343 is a perfect cube, specifically [tex]\(7^3\)[/tex]. Therefore, we can let [tex]\(b = 7\)[/tex].
3. Apply the Formula:
- We can now express [tex]\(a\)[/tex] and [tex]\(b\)[/tex] in the sum of cubes formula:
[tex]\[ (xy)^3 + 7^3 = (xy + 7)((xy)^2 - (xy)(7) + 7^2) \][/tex]
4. Simplify the Inner Expression:
- Simplify each component inside the second factor:
- [tex]\((xy)^2 = x^2 y^2\)[/tex]
- [tex]\((xy)(7) = 7xy\)[/tex]
- [tex]\(7^2 = 49\)[/tex]
5. Rewrite the Factors:
- With these simplifications, rewrite the factors as follows:
[tex]\[ (xy + 7)(x^2 y^2 - 7xy + 49) \][/tex]
By identifying the appropriate values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex], and substituting into the sum of cubes formula, we factorized [tex]\(x^3 y^3 + 343\)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.