Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine which of the given expressions is a like radical to [tex]\( 3 \times \sqrt{5} \)[/tex], we need to understand what a "like radical" is. Like radicals are expressions that have the same radicand (the number under the radical sign) and the same index (the type of root being taken, such as square root or cube root).
Let's analyze each option step by step:
### Option 1: [tex]\( x \times \sqrt[3]{5} \)[/tex]
- This option involves the cube root of [tex]\( 5 \)[/tex]. The expression [tex]\(\sqrt[3]{5}\)[/tex] is a cube root, while [tex]\( \sqrt{5} \)[/tex] is a square root.
- Since [tex]\( \sqrt[3]{5} \)[/tex] and [tex]\( \sqrt{5} \)[/tex] are not the same type of root, [tex]\( x \times \sqrt[3]{5} \)[/tex] is not like [tex]\( 3 \times \sqrt{5} \)[/tex].
### Option 2: [tex]\( \sqrt{5y} \)[/tex]
- This can be rewritten as [tex]\( \sqrt{5} \times \sqrt{y} \)[/tex].
- While this expression contains [tex]\( \sqrt{5} \)[/tex], it also involves an additional factor of [tex]\( \sqrt{y} \)[/tex].
- Because the radicand [tex]\( 5y \)[/tex] is different from [tex]\( 5 \)[/tex], [tex]\( \sqrt{5y} \)[/tex] is not like [tex]\( 3 \times \sqrt{5} \)[/tex].
### Option 3: [tex]\( 3 \times \sqrt[3]{5x} \)[/tex]
- This option involves the cube root of [tex]\( 5x \)[/tex]. The expression [tex]\(\sqrt[3]{5x}\)[/tex] is a cube root.
- Similar to option 1, since [tex]\(\sqrt[3]{5x} \)[/tex] and [tex]\( \sqrt{5} \)[/tex] are not the same type of root, [tex]\( 3 \times \sqrt[3]{5x} \)[/tex] is not like [tex]\( 3 \times \sqrt{5} \)[/tex].
### Option 4: [tex]\( y \times \sqrt{5} \)[/tex]
- This option involves [tex]\( y \)[/tex] as a scalar multiple of [tex]\( \sqrt{5} \)[/tex].
- The expression [tex]\( y \times \sqrt{5} \)[/tex] has the same radicand ([tex]\( 5 \)[/tex]) and the same type of root (square root) as [tex]\( 3 \times \sqrt{5} \)[/tex].
- Here, the radicand and the type of root match exactly with [tex]\( 3 \times \sqrt{5} \)[/tex], making this a like radical expression.
Thus, the correct option is:
[tex]\[ \boxed{y \times \sqrt{5}} \][/tex]
Let's analyze each option step by step:
### Option 1: [tex]\( x \times \sqrt[3]{5} \)[/tex]
- This option involves the cube root of [tex]\( 5 \)[/tex]. The expression [tex]\(\sqrt[3]{5}\)[/tex] is a cube root, while [tex]\( \sqrt{5} \)[/tex] is a square root.
- Since [tex]\( \sqrt[3]{5} \)[/tex] and [tex]\( \sqrt{5} \)[/tex] are not the same type of root, [tex]\( x \times \sqrt[3]{5} \)[/tex] is not like [tex]\( 3 \times \sqrt{5} \)[/tex].
### Option 2: [tex]\( \sqrt{5y} \)[/tex]
- This can be rewritten as [tex]\( \sqrt{5} \times \sqrt{y} \)[/tex].
- While this expression contains [tex]\( \sqrt{5} \)[/tex], it also involves an additional factor of [tex]\( \sqrt{y} \)[/tex].
- Because the radicand [tex]\( 5y \)[/tex] is different from [tex]\( 5 \)[/tex], [tex]\( \sqrt{5y} \)[/tex] is not like [tex]\( 3 \times \sqrt{5} \)[/tex].
### Option 3: [tex]\( 3 \times \sqrt[3]{5x} \)[/tex]
- This option involves the cube root of [tex]\( 5x \)[/tex]. The expression [tex]\(\sqrt[3]{5x}\)[/tex] is a cube root.
- Similar to option 1, since [tex]\(\sqrt[3]{5x} \)[/tex] and [tex]\( \sqrt{5} \)[/tex] are not the same type of root, [tex]\( 3 \times \sqrt[3]{5x} \)[/tex] is not like [tex]\( 3 \times \sqrt{5} \)[/tex].
### Option 4: [tex]\( y \times \sqrt{5} \)[/tex]
- This option involves [tex]\( y \)[/tex] as a scalar multiple of [tex]\( \sqrt{5} \)[/tex].
- The expression [tex]\( y \times \sqrt{5} \)[/tex] has the same radicand ([tex]\( 5 \)[/tex]) and the same type of root (square root) as [tex]\( 3 \times \sqrt{5} \)[/tex].
- Here, the radicand and the type of root match exactly with [tex]\( 3 \times \sqrt{5} \)[/tex], making this a like radical expression.
Thus, the correct option is:
[tex]\[ \boxed{y \times \sqrt{5}} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.