Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To solve this problem, we need to identify the type of nuclear reaction taking place. Here is a step-by-step approach:
1. Examine the given nuclear equation:
[tex]\[ { }_8^{15} O \longrightarrow{ }_7^{15} N +{ }_{+1}^0 e \][/tex]
2. Identify the particles involved:
- On the left side of the equation, we have an oxygen-15 nucleus ([tex]\( _8^{15}O \)[/tex]).
- On the right side of the equation, we have a nitrogen-15 nucleus ([tex]\( _7^{15}N \)[/tex]) and a positron ([tex]\( _{+1}^0 e \)[/tex]).
3. Determine the changes in atomic and mass numbers:
- The oxygen nucleus has an atomic number of 8 and a mass number of 15.
- The nitrogen nucleus has an atomic number of 7 and a mass number of 15.
- The positron has an atomic number of +1 and a mass number of 0.
4. Check the conservation of atomic and mass numbers:
- Mass number (A) on both sides: 15 (oxygen) [tex]\(\longrightarrow\)[/tex] 15 (nitrogen) + 0 (positron).
- Atomic number (Z) on both sides: 8 (oxygen) [tex]\(\longrightarrow\)[/tex] 7 (nitrogen) + 1 (positron).
Both atomic and mass numbers are conserved in this reaction.
5. Identify the type of decay:
In this reaction, a proton in the nucleus of oxygen-15 is converted into a neutron, resulting in a nitrogen-15 nucleus and the emission of a positron. This kind of nuclear transformation is characteristic of beta plus decay (also known as positron emission).
Therefore, the correct identification of the type of reaction is:
Beta plus decay
1. Examine the given nuclear equation:
[tex]\[ { }_8^{15} O \longrightarrow{ }_7^{15} N +{ }_{+1}^0 e \][/tex]
2. Identify the particles involved:
- On the left side of the equation, we have an oxygen-15 nucleus ([tex]\( _8^{15}O \)[/tex]).
- On the right side of the equation, we have a nitrogen-15 nucleus ([tex]\( _7^{15}N \)[/tex]) and a positron ([tex]\( _{+1}^0 e \)[/tex]).
3. Determine the changes in atomic and mass numbers:
- The oxygen nucleus has an atomic number of 8 and a mass number of 15.
- The nitrogen nucleus has an atomic number of 7 and a mass number of 15.
- The positron has an atomic number of +1 and a mass number of 0.
4. Check the conservation of atomic and mass numbers:
- Mass number (A) on both sides: 15 (oxygen) [tex]\(\longrightarrow\)[/tex] 15 (nitrogen) + 0 (positron).
- Atomic number (Z) on both sides: 8 (oxygen) [tex]\(\longrightarrow\)[/tex] 7 (nitrogen) + 1 (positron).
Both atomic and mass numbers are conserved in this reaction.
5. Identify the type of decay:
In this reaction, a proton in the nucleus of oxygen-15 is converted into a neutron, resulting in a nitrogen-15 nucleus and the emission of a positron. This kind of nuclear transformation is characteristic of beta plus decay (also known as positron emission).
Therefore, the correct identification of the type of reaction is:
Beta plus decay
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.