Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve this problem, we need to identify the type of nuclear reaction taking place. Here is a step-by-step approach:
1. Examine the given nuclear equation:
[tex]\[ { }_8^{15} O \longrightarrow{ }_7^{15} N +{ }_{+1}^0 e \][/tex]
2. Identify the particles involved:
- On the left side of the equation, we have an oxygen-15 nucleus ([tex]\( _8^{15}O \)[/tex]).
- On the right side of the equation, we have a nitrogen-15 nucleus ([tex]\( _7^{15}N \)[/tex]) and a positron ([tex]\( _{+1}^0 e \)[/tex]).
3. Determine the changes in atomic and mass numbers:
- The oxygen nucleus has an atomic number of 8 and a mass number of 15.
- The nitrogen nucleus has an atomic number of 7 and a mass number of 15.
- The positron has an atomic number of +1 and a mass number of 0.
4. Check the conservation of atomic and mass numbers:
- Mass number (A) on both sides: 15 (oxygen) [tex]\(\longrightarrow\)[/tex] 15 (nitrogen) + 0 (positron).
- Atomic number (Z) on both sides: 8 (oxygen) [tex]\(\longrightarrow\)[/tex] 7 (nitrogen) + 1 (positron).
Both atomic and mass numbers are conserved in this reaction.
5. Identify the type of decay:
In this reaction, a proton in the nucleus of oxygen-15 is converted into a neutron, resulting in a nitrogen-15 nucleus and the emission of a positron. This kind of nuclear transformation is characteristic of beta plus decay (also known as positron emission).
Therefore, the correct identification of the type of reaction is:
Beta plus decay
1. Examine the given nuclear equation:
[tex]\[ { }_8^{15} O \longrightarrow{ }_7^{15} N +{ }_{+1}^0 e \][/tex]
2. Identify the particles involved:
- On the left side of the equation, we have an oxygen-15 nucleus ([tex]\( _8^{15}O \)[/tex]).
- On the right side of the equation, we have a nitrogen-15 nucleus ([tex]\( _7^{15}N \)[/tex]) and a positron ([tex]\( _{+1}^0 e \)[/tex]).
3. Determine the changes in atomic and mass numbers:
- The oxygen nucleus has an atomic number of 8 and a mass number of 15.
- The nitrogen nucleus has an atomic number of 7 and a mass number of 15.
- The positron has an atomic number of +1 and a mass number of 0.
4. Check the conservation of atomic and mass numbers:
- Mass number (A) on both sides: 15 (oxygen) [tex]\(\longrightarrow\)[/tex] 15 (nitrogen) + 0 (positron).
- Atomic number (Z) on both sides: 8 (oxygen) [tex]\(\longrightarrow\)[/tex] 7 (nitrogen) + 1 (positron).
Both atomic and mass numbers are conserved in this reaction.
5. Identify the type of decay:
In this reaction, a proton in the nucleus of oxygen-15 is converted into a neutron, resulting in a nitrogen-15 nucleus and the emission of a positron. This kind of nuclear transformation is characteristic of beta plus decay (also known as positron emission).
Therefore, the correct identification of the type of reaction is:
Beta plus decay
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.