Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Fully factorize the expression:

[tex]\[ x^2 + 8xy + 12y^2 \][/tex]


Sagot :

Sure! Let's fully factorize the expression [tex]\( x^2 + 8xy + 12y^2 \)[/tex] step by step.

1. Identify the form of the quadratic expression:
The given expression is a quadratic trinomial in the form [tex]\( ax^2 + bxy + cy^2 \)[/tex] with:
- [tex]\( a = 1 \)[/tex]
- [tex]\( b = 8 \)[/tex]
- [tex]\( c = 12 \)[/tex]

2. Look for two binomials of the form [tex]\((x + m y)(x + n y)\)[/tex]:
We need to find integers [tex]\(m\)[/tex] and [tex]\(n\)[/tex] such that:
- [tex]\( m \cdot n = c = 12 \)[/tex]
- [tex]\( m + n = b = 8 \)[/tex]

3. Find pairs of factors of [tex]\(c = 12\)[/tex] that add up to [tex]\(b = 8\)[/tex] and test them:
Let's determine the pairs that multiply to 12:
- (1, 12)
- (2, 6)
- (3, 4)
- (-1, -12)
- (-2, -6)
- (-3, -4)

Out of these pairs, the pair (2, 6) sums up to 8 (i.e., [tex]\( 2 + 6 = 8 \)[/tex]).

4. Write the expression in factored form:
Given the pairs (2, 6), we can rewrite the expression [tex]\( x^2 + 8xy + 12y^2 \)[/tex] as:
[tex]\[ (x + 2y)(x + 6y) \][/tex]

5. Verification:
To verify whether our factorization is correct, we can expand [tex]\((x + 2y)(x + 6y)\)[/tex] and check if we get back the original expression:
[tex]\[ (x + 2y)(x + 6y) = x \cdot x + x \cdot 6y + 2y \cdot x + 2y \cdot 6y = x^2 + 6xy + 2xy + 12y^2 = x^2 + 8xy + 12y^2 \][/tex]
Since we get back the original expression, our factorization is correct.

Therefore, the fully factorized form of [tex]\( x^2 + 8xy + 12y^2 \)[/tex] is:
[tex]\[ (x + 2y)(x + 6y) \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.