Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Sure! Let's fully factorize the expression [tex]\( x^2 + 8xy + 12y^2 \)[/tex] step by step.
1. Identify the form of the quadratic expression:
The given expression is a quadratic trinomial in the form [tex]\( ax^2 + bxy + cy^2 \)[/tex] with:
- [tex]\( a = 1 \)[/tex]
- [tex]\( b = 8 \)[/tex]
- [tex]\( c = 12 \)[/tex]
2. Look for two binomials of the form [tex]\((x + m y)(x + n y)\)[/tex]:
We need to find integers [tex]\(m\)[/tex] and [tex]\(n\)[/tex] such that:
- [tex]\( m \cdot n = c = 12 \)[/tex]
- [tex]\( m + n = b = 8 \)[/tex]
3. Find pairs of factors of [tex]\(c = 12\)[/tex] that add up to [tex]\(b = 8\)[/tex] and test them:
Let's determine the pairs that multiply to 12:
- (1, 12)
- (2, 6)
- (3, 4)
- (-1, -12)
- (-2, -6)
- (-3, -4)
Out of these pairs, the pair (2, 6) sums up to 8 (i.e., [tex]\( 2 + 6 = 8 \)[/tex]).
4. Write the expression in factored form:
Given the pairs (2, 6), we can rewrite the expression [tex]\( x^2 + 8xy + 12y^2 \)[/tex] as:
[tex]\[ (x + 2y)(x + 6y) \][/tex]
5. Verification:
To verify whether our factorization is correct, we can expand [tex]\((x + 2y)(x + 6y)\)[/tex] and check if we get back the original expression:
[tex]\[ (x + 2y)(x + 6y) = x \cdot x + x \cdot 6y + 2y \cdot x + 2y \cdot 6y = x^2 + 6xy + 2xy + 12y^2 = x^2 + 8xy + 12y^2 \][/tex]
Since we get back the original expression, our factorization is correct.
Therefore, the fully factorized form of [tex]\( x^2 + 8xy + 12y^2 \)[/tex] is:
[tex]\[ (x + 2y)(x + 6y) \][/tex]
1. Identify the form of the quadratic expression:
The given expression is a quadratic trinomial in the form [tex]\( ax^2 + bxy + cy^2 \)[/tex] with:
- [tex]\( a = 1 \)[/tex]
- [tex]\( b = 8 \)[/tex]
- [tex]\( c = 12 \)[/tex]
2. Look for two binomials of the form [tex]\((x + m y)(x + n y)\)[/tex]:
We need to find integers [tex]\(m\)[/tex] and [tex]\(n\)[/tex] such that:
- [tex]\( m \cdot n = c = 12 \)[/tex]
- [tex]\( m + n = b = 8 \)[/tex]
3. Find pairs of factors of [tex]\(c = 12\)[/tex] that add up to [tex]\(b = 8\)[/tex] and test them:
Let's determine the pairs that multiply to 12:
- (1, 12)
- (2, 6)
- (3, 4)
- (-1, -12)
- (-2, -6)
- (-3, -4)
Out of these pairs, the pair (2, 6) sums up to 8 (i.e., [tex]\( 2 + 6 = 8 \)[/tex]).
4. Write the expression in factored form:
Given the pairs (2, 6), we can rewrite the expression [tex]\( x^2 + 8xy + 12y^2 \)[/tex] as:
[tex]\[ (x + 2y)(x + 6y) \][/tex]
5. Verification:
To verify whether our factorization is correct, we can expand [tex]\((x + 2y)(x + 6y)\)[/tex] and check if we get back the original expression:
[tex]\[ (x + 2y)(x + 6y) = x \cdot x + x \cdot 6y + 2y \cdot x + 2y \cdot 6y = x^2 + 6xy + 2xy + 12y^2 = x^2 + 8xy + 12y^2 \][/tex]
Since we get back the original expression, our factorization is correct.
Therefore, the fully factorized form of [tex]\( x^2 + 8xy + 12y^2 \)[/tex] is:
[tex]\[ (x + 2y)(x + 6y) \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.