Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To identify the transformation from [tex]\( f(x) = x^2 - 1 \)[/tex] to [tex]\( g(x) = (x + 2)^2 - 1 \)[/tex], let's analyze the changes step-by-step.
1. Start with the original function: [tex]\( f(x) = x^2 - 1 \)[/tex].
2. Consider the function [tex]\( g(x) = (x + 2)^2 - 1 \)[/tex].
First, recognize that the main difference between [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] is the argument of the squared term, [tex]\( x \)[/tex] vs. [tex]\( x + 2 \)[/tex].
### Step-by-Step Analysis:
#### Step 1: Compare the squared terms
- In [tex]\( f(x) \)[/tex], the squared term is [tex]\( x^2 \)[/tex].
- In [tex]\( g(x) \)[/tex], the squared term is [tex]\( (x + 2)^2 \)[/tex].
#### Step 2: Understand the transformation
- The term [tex]\( x + 2 \)[/tex] indicates a horizontal translation because it involves adding a constant to the [tex]\( x \)[/tex]-variable inside the function.
- Specifically, adding 2 to [tex]\( x \)[/tex] suggests shifting the graph of the function to the left.
Therefore, [tex]\( g(x) = (x + 2)^2 - 1 \)[/tex] is the same as shifting the graph of [tex]\( f(x) = x^2 - 1 \)[/tex] horizontally.
#### Step 3: Determine the direction and magnitude of the shift
- Adding a constant [tex]\( +2 \)[/tex] to [tex]\( x \)[/tex] shifts the graph to the left by 2 units.
Thus, the correct description of the transformation from [tex]\( f(x) \)[/tex] to [tex]\( g(x) \)[/tex] is:
a horizontal translation 2 units to the left.
So, the answer is:
- a horizontal translation 2 units to the left.
This analysis confirms that this transformation is correctly described as a horizontal translation of 2 units to the left.
1. Start with the original function: [tex]\( f(x) = x^2 - 1 \)[/tex].
2. Consider the function [tex]\( g(x) = (x + 2)^2 - 1 \)[/tex].
First, recognize that the main difference between [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] is the argument of the squared term, [tex]\( x \)[/tex] vs. [tex]\( x + 2 \)[/tex].
### Step-by-Step Analysis:
#### Step 1: Compare the squared terms
- In [tex]\( f(x) \)[/tex], the squared term is [tex]\( x^2 \)[/tex].
- In [tex]\( g(x) \)[/tex], the squared term is [tex]\( (x + 2)^2 \)[/tex].
#### Step 2: Understand the transformation
- The term [tex]\( x + 2 \)[/tex] indicates a horizontal translation because it involves adding a constant to the [tex]\( x \)[/tex]-variable inside the function.
- Specifically, adding 2 to [tex]\( x \)[/tex] suggests shifting the graph of the function to the left.
Therefore, [tex]\( g(x) = (x + 2)^2 - 1 \)[/tex] is the same as shifting the graph of [tex]\( f(x) = x^2 - 1 \)[/tex] horizontally.
#### Step 3: Determine the direction and magnitude of the shift
- Adding a constant [tex]\( +2 \)[/tex] to [tex]\( x \)[/tex] shifts the graph to the left by 2 units.
Thus, the correct description of the transformation from [tex]\( f(x) \)[/tex] to [tex]\( g(x) \)[/tex] is:
a horizontal translation 2 units to the left.
So, the answer is:
- a horizontal translation 2 units to the left.
This analysis confirms that this transformation is correctly described as a horizontal translation of 2 units to the left.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.