Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Sure, let's tackle this problem step-by-step.
1. Start with the given function [tex]\( f(x) = (x-1)^2 \)[/tex].
2. Understand what a vertical stretch is:
- A vertical stretch of a function by a factor of [tex]\( a \)[/tex] means that every value of the function will be multiplied by [tex]\( a \)[/tex].
- In mathematical terms, if [tex]\( f(x) \)[/tex] is your original function and you want to stretch it vertically by a factor of [tex]\( a \)[/tex], the new function [tex]\( g(x) \)[/tex] will be [tex]\( g(x) = a \cdot f(x) \)[/tex].
3. Identify the stretch factor:
- In this problem, the function is being stretched by a factor of 2.
- This means we will multiply the original function by 2.
4. Apply the stretch:
- The original function is [tex]\( f(x) = (x-1)^2 \)[/tex].
- To apply the vertical stretch by a factor of 2, we multiply [tex]\( (x-1)^2 \)[/tex] by 2.
- Hence, the new function [tex]\( g(x) \)[/tex] is given by:
[tex]\[ g(x) = 2 \cdot (x-1)^2 \][/tex]
5. Write the final function:
- Therefore, the equation for [tex]\( g(x) \)[/tex] after the vertical stretch by a factor of 2 is:
[tex]\[ g(x) = 2 \cdot (x-1)^2 \][/tex]
So, the equation of [tex]\( g(x) \)[/tex] is:
[tex]\[ g(x) = 2 \cdot (x-1)^2 \][/tex]
1. Start with the given function [tex]\( f(x) = (x-1)^2 \)[/tex].
2. Understand what a vertical stretch is:
- A vertical stretch of a function by a factor of [tex]\( a \)[/tex] means that every value of the function will be multiplied by [tex]\( a \)[/tex].
- In mathematical terms, if [tex]\( f(x) \)[/tex] is your original function and you want to stretch it vertically by a factor of [tex]\( a \)[/tex], the new function [tex]\( g(x) \)[/tex] will be [tex]\( g(x) = a \cdot f(x) \)[/tex].
3. Identify the stretch factor:
- In this problem, the function is being stretched by a factor of 2.
- This means we will multiply the original function by 2.
4. Apply the stretch:
- The original function is [tex]\( f(x) = (x-1)^2 \)[/tex].
- To apply the vertical stretch by a factor of 2, we multiply [tex]\( (x-1)^2 \)[/tex] by 2.
- Hence, the new function [tex]\( g(x) \)[/tex] is given by:
[tex]\[ g(x) = 2 \cdot (x-1)^2 \][/tex]
5. Write the final function:
- Therefore, the equation for [tex]\( g(x) \)[/tex] after the vertical stretch by a factor of 2 is:
[tex]\[ g(x) = 2 \cdot (x-1)^2 \][/tex]
So, the equation of [tex]\( g(x) \)[/tex] is:
[tex]\[ g(x) = 2 \cdot (x-1)^2 \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.