Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine how much energy is required to boil [tex]\( 100 \, \text{mL} \)[/tex] of water, we need to perform the following steps:
1. Convert the volume of water to mass: Given that the density of water is [tex]\( 1 \, \text{g/mL} \)[/tex], the mass [tex]\( m \)[/tex] of [tex]\( 100 \, \text{mL} \)[/tex] of water can be calculated as:
[tex]\[ m = 100 \, \text{mL} \times 1 \, \frac{\text{g}}{\text{mL}} = 100 \, \text{g} \][/tex]
2. Convert mass of water to moles: Using the molar mass of water, [tex]\( 18.02 \, \text{g/mol} \)[/tex], we can calculate the number of moles [tex]\( n \)[/tex] of water in [tex]\( 100 \, \text{g} \)[/tex]:
[tex]\[ n = \frac{100 \, \text{g}}{18.02 \, \text{g/mol}} \approx 5.55 \, \text{mol} \][/tex]
3. Calculate energy required for different constants:
- For Option A: The energy per mole is [tex]\( 4.186 \, \text{kJ/mol} \)[/tex], so the total energy [tex]\( E_A \)[/tex] is:
[tex]\[ E_A = n \times 4.186 \, \frac{\text{kJ}}{\text{mol}} \approx 5.55 \, \text{mol} \times 4.186 \, \frac{\text{kJ}}{\text{mol}} = 23.23 \, \text{kJ} \][/tex]
- For Option B: The energy per mole is [tex]\( 6.03 \, \text{kJ/mol} \)[/tex], so the total energy [tex]\( E_B \)[/tex] is:
[tex]\[ E_B = n \times 6.03 \, \frac{\text{kJ}}{\text{mol}} \approx 5.55 \, \text{mol} \times 6.03 \, \frac{\text{kJ}}{\text{mol}} = 33.46 \, \text{kJ} \][/tex]
- For Option C: The energy per mole is [tex]\( -285.83 \, \text{kJ/mol} \)[/tex], so the total energy [tex]\( E_C \)[/tex] is:
[tex]\[ E_C = n \times (-285.83) \, \frac{\text{kJ}}{\text{mol}} \approx 5.55 \, \text{mol} \times (-285.83) \, \frac{\text{kJ}}{\text{mol}} = -1586.18 \, \text{kJ} \][/tex]
- For Option D: The energy per mole is [tex]\( 40.65 \, \text{kJ/mol} \)[/tex], so the total energy [tex]\( E_D \)[/tex] is:
[tex]\[ E_D = n \times 40.65 \, \frac{\text{kJ}}{\text{mol}} \approx 5.55 \, \text{mol} \times 40.65 \, \frac{\text{kJ}}{\text{mol}} = 225.58 \, \text{kJ} \][/tex]
Based on the results of our calculations:
- [tex]\( E_A \approx 23.23 \, \text{kJ} \)[/tex]
- [tex]\( E_B \approx 33.46 \, \text{kJ} \)[/tex]
- [tex]\( E_C \approx -1586.18 \, \text{kJ} \)[/tex]
- [tex]\( E_D \approx 225.58 \, \text{kJ} \)[/tex]
The correct option, which closely matches our calculated energy required to boil [tex]\( 100 \, \text{mL} \)[/tex] of water, is:
D. [tex]$100 \, \text{mL} \times \frac{1 \, \text{g}}{1 \, \text{mL}} \times \frac{1 \, \text{mol}}{18.02 \, \text{g}} \times 40.65 \, \text{kJ/mol} = 226 \, \text{kJ}$[/tex]
1. Convert the volume of water to mass: Given that the density of water is [tex]\( 1 \, \text{g/mL} \)[/tex], the mass [tex]\( m \)[/tex] of [tex]\( 100 \, \text{mL} \)[/tex] of water can be calculated as:
[tex]\[ m = 100 \, \text{mL} \times 1 \, \frac{\text{g}}{\text{mL}} = 100 \, \text{g} \][/tex]
2. Convert mass of water to moles: Using the molar mass of water, [tex]\( 18.02 \, \text{g/mol} \)[/tex], we can calculate the number of moles [tex]\( n \)[/tex] of water in [tex]\( 100 \, \text{g} \)[/tex]:
[tex]\[ n = \frac{100 \, \text{g}}{18.02 \, \text{g/mol}} \approx 5.55 \, \text{mol} \][/tex]
3. Calculate energy required for different constants:
- For Option A: The energy per mole is [tex]\( 4.186 \, \text{kJ/mol} \)[/tex], so the total energy [tex]\( E_A \)[/tex] is:
[tex]\[ E_A = n \times 4.186 \, \frac{\text{kJ}}{\text{mol}} \approx 5.55 \, \text{mol} \times 4.186 \, \frac{\text{kJ}}{\text{mol}} = 23.23 \, \text{kJ} \][/tex]
- For Option B: The energy per mole is [tex]\( 6.03 \, \text{kJ/mol} \)[/tex], so the total energy [tex]\( E_B \)[/tex] is:
[tex]\[ E_B = n \times 6.03 \, \frac{\text{kJ}}{\text{mol}} \approx 5.55 \, \text{mol} \times 6.03 \, \frac{\text{kJ}}{\text{mol}} = 33.46 \, \text{kJ} \][/tex]
- For Option C: The energy per mole is [tex]\( -285.83 \, \text{kJ/mol} \)[/tex], so the total energy [tex]\( E_C \)[/tex] is:
[tex]\[ E_C = n \times (-285.83) \, \frac{\text{kJ}}{\text{mol}} \approx 5.55 \, \text{mol} \times (-285.83) \, \frac{\text{kJ}}{\text{mol}} = -1586.18 \, \text{kJ} \][/tex]
- For Option D: The energy per mole is [tex]\( 40.65 \, \text{kJ/mol} \)[/tex], so the total energy [tex]\( E_D \)[/tex] is:
[tex]\[ E_D = n \times 40.65 \, \frac{\text{kJ}}{\text{mol}} \approx 5.55 \, \text{mol} \times 40.65 \, \frac{\text{kJ}}{\text{mol}} = 225.58 \, \text{kJ} \][/tex]
Based on the results of our calculations:
- [tex]\( E_A \approx 23.23 \, \text{kJ} \)[/tex]
- [tex]\( E_B \approx 33.46 \, \text{kJ} \)[/tex]
- [tex]\( E_C \approx -1586.18 \, \text{kJ} \)[/tex]
- [tex]\( E_D \approx 225.58 \, \text{kJ} \)[/tex]
The correct option, which closely matches our calculated energy required to boil [tex]\( 100 \, \text{mL} \)[/tex] of water, is:
D. [tex]$100 \, \text{mL} \times \frac{1 \, \text{g}}{1 \, \text{mL}} \times \frac{1 \, \text{mol}}{18.02 \, \text{g}} \times 40.65 \, \text{kJ/mol} = 226 \, \text{kJ}$[/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.