Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine how much energy is required to boil [tex]\( 100 \, \text{mL} \)[/tex] of water, we need to perform the following steps:
1. Convert the volume of water to mass: Given that the density of water is [tex]\( 1 \, \text{g/mL} \)[/tex], the mass [tex]\( m \)[/tex] of [tex]\( 100 \, \text{mL} \)[/tex] of water can be calculated as:
[tex]\[ m = 100 \, \text{mL} \times 1 \, \frac{\text{g}}{\text{mL}} = 100 \, \text{g} \][/tex]
2. Convert mass of water to moles: Using the molar mass of water, [tex]\( 18.02 \, \text{g/mol} \)[/tex], we can calculate the number of moles [tex]\( n \)[/tex] of water in [tex]\( 100 \, \text{g} \)[/tex]:
[tex]\[ n = \frac{100 \, \text{g}}{18.02 \, \text{g/mol}} \approx 5.55 \, \text{mol} \][/tex]
3. Calculate energy required for different constants:
- For Option A: The energy per mole is [tex]\( 4.186 \, \text{kJ/mol} \)[/tex], so the total energy [tex]\( E_A \)[/tex] is:
[tex]\[ E_A = n \times 4.186 \, \frac{\text{kJ}}{\text{mol}} \approx 5.55 \, \text{mol} \times 4.186 \, \frac{\text{kJ}}{\text{mol}} = 23.23 \, \text{kJ} \][/tex]
- For Option B: The energy per mole is [tex]\( 6.03 \, \text{kJ/mol} \)[/tex], so the total energy [tex]\( E_B \)[/tex] is:
[tex]\[ E_B = n \times 6.03 \, \frac{\text{kJ}}{\text{mol}} \approx 5.55 \, \text{mol} \times 6.03 \, \frac{\text{kJ}}{\text{mol}} = 33.46 \, \text{kJ} \][/tex]
- For Option C: The energy per mole is [tex]\( -285.83 \, \text{kJ/mol} \)[/tex], so the total energy [tex]\( E_C \)[/tex] is:
[tex]\[ E_C = n \times (-285.83) \, \frac{\text{kJ}}{\text{mol}} \approx 5.55 \, \text{mol} \times (-285.83) \, \frac{\text{kJ}}{\text{mol}} = -1586.18 \, \text{kJ} \][/tex]
- For Option D: The energy per mole is [tex]\( 40.65 \, \text{kJ/mol} \)[/tex], so the total energy [tex]\( E_D \)[/tex] is:
[tex]\[ E_D = n \times 40.65 \, \frac{\text{kJ}}{\text{mol}} \approx 5.55 \, \text{mol} \times 40.65 \, \frac{\text{kJ}}{\text{mol}} = 225.58 \, \text{kJ} \][/tex]
Based on the results of our calculations:
- [tex]\( E_A \approx 23.23 \, \text{kJ} \)[/tex]
- [tex]\( E_B \approx 33.46 \, \text{kJ} \)[/tex]
- [tex]\( E_C \approx -1586.18 \, \text{kJ} \)[/tex]
- [tex]\( E_D \approx 225.58 \, \text{kJ} \)[/tex]
The correct option, which closely matches our calculated energy required to boil [tex]\( 100 \, \text{mL} \)[/tex] of water, is:
D. [tex]$100 \, \text{mL} \times \frac{1 \, \text{g}}{1 \, \text{mL}} \times \frac{1 \, \text{mol}}{18.02 \, \text{g}} \times 40.65 \, \text{kJ/mol} = 226 \, \text{kJ}$[/tex]
1. Convert the volume of water to mass: Given that the density of water is [tex]\( 1 \, \text{g/mL} \)[/tex], the mass [tex]\( m \)[/tex] of [tex]\( 100 \, \text{mL} \)[/tex] of water can be calculated as:
[tex]\[ m = 100 \, \text{mL} \times 1 \, \frac{\text{g}}{\text{mL}} = 100 \, \text{g} \][/tex]
2. Convert mass of water to moles: Using the molar mass of water, [tex]\( 18.02 \, \text{g/mol} \)[/tex], we can calculate the number of moles [tex]\( n \)[/tex] of water in [tex]\( 100 \, \text{g} \)[/tex]:
[tex]\[ n = \frac{100 \, \text{g}}{18.02 \, \text{g/mol}} \approx 5.55 \, \text{mol} \][/tex]
3. Calculate energy required for different constants:
- For Option A: The energy per mole is [tex]\( 4.186 \, \text{kJ/mol} \)[/tex], so the total energy [tex]\( E_A \)[/tex] is:
[tex]\[ E_A = n \times 4.186 \, \frac{\text{kJ}}{\text{mol}} \approx 5.55 \, \text{mol} \times 4.186 \, \frac{\text{kJ}}{\text{mol}} = 23.23 \, \text{kJ} \][/tex]
- For Option B: The energy per mole is [tex]\( 6.03 \, \text{kJ/mol} \)[/tex], so the total energy [tex]\( E_B \)[/tex] is:
[tex]\[ E_B = n \times 6.03 \, \frac{\text{kJ}}{\text{mol}} \approx 5.55 \, \text{mol} \times 6.03 \, \frac{\text{kJ}}{\text{mol}} = 33.46 \, \text{kJ} \][/tex]
- For Option C: The energy per mole is [tex]\( -285.83 \, \text{kJ/mol} \)[/tex], so the total energy [tex]\( E_C \)[/tex] is:
[tex]\[ E_C = n \times (-285.83) \, \frac{\text{kJ}}{\text{mol}} \approx 5.55 \, \text{mol} \times (-285.83) \, \frac{\text{kJ}}{\text{mol}} = -1586.18 \, \text{kJ} \][/tex]
- For Option D: The energy per mole is [tex]\( 40.65 \, \text{kJ/mol} \)[/tex], so the total energy [tex]\( E_D \)[/tex] is:
[tex]\[ E_D = n \times 40.65 \, \frac{\text{kJ}}{\text{mol}} \approx 5.55 \, \text{mol} \times 40.65 \, \frac{\text{kJ}}{\text{mol}} = 225.58 \, \text{kJ} \][/tex]
Based on the results of our calculations:
- [tex]\( E_A \approx 23.23 \, \text{kJ} \)[/tex]
- [tex]\( E_B \approx 33.46 \, \text{kJ} \)[/tex]
- [tex]\( E_C \approx -1586.18 \, \text{kJ} \)[/tex]
- [tex]\( E_D \approx 225.58 \, \text{kJ} \)[/tex]
The correct option, which closely matches our calculated energy required to boil [tex]\( 100 \, \text{mL} \)[/tex] of water, is:
D. [tex]$100 \, \text{mL} \times \frac{1 \, \text{g}}{1 \, \text{mL}} \times \frac{1 \, \text{mol}}{18.02 \, \text{g}} \times 40.65 \, \text{kJ/mol} = 226 \, \text{kJ}$[/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.