Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine which transformer Roberto should use to achieve an ending voltage of [tex]\( 4 \, \text{V} \)[/tex], let's go through the problem step by step.
### Step 1: First Transformer Calculation
Roberto uses the first transformer with:
- Primary winding: 300 coils
- Secondary winding: 50 coils
He starts with an initial voltage of [tex]\( 120 \, \text{V} \)[/tex].
Given the formula for the voltage transformation:
[tex]\[ V_s = V_p \times \frac{N_s}{N_p} \][/tex]
where:
- [tex]\( V_s \)[/tex] is the secondary voltage.
- [tex]\( V_p \)[/tex] is the primary voltage.
- [tex]\( N_s \)[/tex] is the number of secondary coils.
- [tex]\( N_p \)[/tex] is the number of primary coils.
Substitute the given values:
[tex]\[ V_s = 120 \, \text{V} \times \frac{50}{300} \][/tex]
Calculating the fraction:
[tex]\[ V_s = 120 \, \text{V} \times \frac{1}{6} = 20 \, \text{V} \][/tex]
The intermediate voltage after the first transformer is [tex]\( 20 \, \text{V} \)[/tex].
### Step 2: Second Transformer Calculation
Roberto now needs to reduce the [tex]\( 20 \, \text{V} \)[/tex] intermediate voltage down to [tex]\( 4 \, \text{V} \)[/tex] using one of the available transformers. Let's check each transformer to find the right one:
#### Transformer W:
- Primary winding: 80 coils
- Secondary winding: 20 coils
The voltage transformation formula:
[tex]\[ V_s = V_p \times \frac{N_s}{N_p} \][/tex]
[tex]\[ V_s = 20 \, \text{V} \times \frac{20}{80} = 20 \, \text{V} \times \frac{1}{4} = 5 \, \text{V} \][/tex]
This does not give us the desired [tex]\( 4 \, \text{V} \)[/tex].
#### Transformer X:
- Primary winding: 60 coils
- Secondary winding: 12 coils
Using the formula:
[tex]\[ V_s = V_p \times \frac{N_s}{N_p} \][/tex]
[tex]\[ V_s = 20 \, \text{V} \times \frac{12}{60} = 20 \, \text{V} \times \frac{1}{5} = 4 \, \text{V} \][/tex]
This gives us the exact desired [tex]\( 4 \, \text{V} \)[/tex].
#### Transformer Y:
- Primary winding: 70 coils
- Secondary winding: 35 coils
Using the formula:
[tex]\[ V_s = V_p \times \frac{N_s}{N_p} \][/tex]
[tex]\[ V_s = 20 \, \text{V} \times \frac{35}{70} = 20 \, \text{V} \times \frac{1}{2} = 10 \, \text{V} \][/tex]
This does not give us the desired [tex]\( 4 \, \text{V} \)[/tex].
#### Transformer Z:
- Primary winding: 50 coils
- Secondary winding: 5 coils
Using the formula:
[tex]\[ V_s = V_p \times \frac{N_s}{N_p} \][/tex]
[tex]\[ V_s = 20 \, \text{V} \times \frac{5}{50} = 20 \, \text{V} \times \frac{1}{10} = 2 \, \text{V} \][/tex]
This does not give us the desired [tex]\( 4 \, \text{V} \)[/tex].
### Conclusion
From the calculations, we see that Transformer X is the one that achieves the ending voltage of [tex]\( 4 \, \text{V} \)[/tex]. Therefore, Roberto should use transformer [tex]\( \boxed{X} \)[/tex].
### Step 1: First Transformer Calculation
Roberto uses the first transformer with:
- Primary winding: 300 coils
- Secondary winding: 50 coils
He starts with an initial voltage of [tex]\( 120 \, \text{V} \)[/tex].
Given the formula for the voltage transformation:
[tex]\[ V_s = V_p \times \frac{N_s}{N_p} \][/tex]
where:
- [tex]\( V_s \)[/tex] is the secondary voltage.
- [tex]\( V_p \)[/tex] is the primary voltage.
- [tex]\( N_s \)[/tex] is the number of secondary coils.
- [tex]\( N_p \)[/tex] is the number of primary coils.
Substitute the given values:
[tex]\[ V_s = 120 \, \text{V} \times \frac{50}{300} \][/tex]
Calculating the fraction:
[tex]\[ V_s = 120 \, \text{V} \times \frac{1}{6} = 20 \, \text{V} \][/tex]
The intermediate voltage after the first transformer is [tex]\( 20 \, \text{V} \)[/tex].
### Step 2: Second Transformer Calculation
Roberto now needs to reduce the [tex]\( 20 \, \text{V} \)[/tex] intermediate voltage down to [tex]\( 4 \, \text{V} \)[/tex] using one of the available transformers. Let's check each transformer to find the right one:
#### Transformer W:
- Primary winding: 80 coils
- Secondary winding: 20 coils
The voltage transformation formula:
[tex]\[ V_s = V_p \times \frac{N_s}{N_p} \][/tex]
[tex]\[ V_s = 20 \, \text{V} \times \frac{20}{80} = 20 \, \text{V} \times \frac{1}{4} = 5 \, \text{V} \][/tex]
This does not give us the desired [tex]\( 4 \, \text{V} \)[/tex].
#### Transformer X:
- Primary winding: 60 coils
- Secondary winding: 12 coils
Using the formula:
[tex]\[ V_s = V_p \times \frac{N_s}{N_p} \][/tex]
[tex]\[ V_s = 20 \, \text{V} \times \frac{12}{60} = 20 \, \text{V} \times \frac{1}{5} = 4 \, \text{V} \][/tex]
This gives us the exact desired [tex]\( 4 \, \text{V} \)[/tex].
#### Transformer Y:
- Primary winding: 70 coils
- Secondary winding: 35 coils
Using the formula:
[tex]\[ V_s = V_p \times \frac{N_s}{N_p} \][/tex]
[tex]\[ V_s = 20 \, \text{V} \times \frac{35}{70} = 20 \, \text{V} \times \frac{1}{2} = 10 \, \text{V} \][/tex]
This does not give us the desired [tex]\( 4 \, \text{V} \)[/tex].
#### Transformer Z:
- Primary winding: 50 coils
- Secondary winding: 5 coils
Using the formula:
[tex]\[ V_s = V_p \times \frac{N_s}{N_p} \][/tex]
[tex]\[ V_s = 20 \, \text{V} \times \frac{5}{50} = 20 \, \text{V} \times \frac{1}{10} = 2 \, \text{V} \][/tex]
This does not give us the desired [tex]\( 4 \, \text{V} \)[/tex].
### Conclusion
From the calculations, we see that Transformer X is the one that achieves the ending voltage of [tex]\( 4 \, \text{V} \)[/tex]. Therefore, Roberto should use transformer [tex]\( \boxed{X} \)[/tex].
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.