Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Roberto plans to use two transformers to reduce a voltage of [tex][tex]$120 V$[/tex][/tex] to [tex][tex]$4 V$[/tex][/tex]. He uses a transformer that has 300 coils in the primary winding and 50 coils in the secondary winding. He has four other transformers, as listed in the table.

\begin{tabular}{|l|c|c|}
\hline
Transformer & Primary Winding (coils) & Secondary Winding (coils) \\
\hline
W & 80 & 20 \\
\hline
X & 60 & 12 \\
\hline
Y & 70 & 35 \\
\hline
Z & 50 & 5 \\
\hline
\end{tabular}

Which transformer should Roberto use to have an ending voltage of [tex][tex]$4 V$[/tex][/tex]?

A. W
B. X
C. Y
D. Z


Sagot :

To determine which transformer Roberto should use to achieve an ending voltage of [tex]\( 4 \, \text{V} \)[/tex], let's go through the problem step by step.

### Step 1: First Transformer Calculation

Roberto uses the first transformer with:
- Primary winding: 300 coils
- Secondary winding: 50 coils

He starts with an initial voltage of [tex]\( 120 \, \text{V} \)[/tex].

Given the formula for the voltage transformation:
[tex]\[ V_s = V_p \times \frac{N_s}{N_p} \][/tex]

where:
- [tex]\( V_s \)[/tex] is the secondary voltage.
- [tex]\( V_p \)[/tex] is the primary voltage.
- [tex]\( N_s \)[/tex] is the number of secondary coils.
- [tex]\( N_p \)[/tex] is the number of primary coils.

Substitute the given values:
[tex]\[ V_s = 120 \, \text{V} \times \frac{50}{300} \][/tex]

Calculating the fraction:
[tex]\[ V_s = 120 \, \text{V} \times \frac{1}{6} = 20 \, \text{V} \][/tex]

The intermediate voltage after the first transformer is [tex]\( 20 \, \text{V} \)[/tex].

### Step 2: Second Transformer Calculation

Roberto now needs to reduce the [tex]\( 20 \, \text{V} \)[/tex] intermediate voltage down to [tex]\( 4 \, \text{V} \)[/tex] using one of the available transformers. Let's check each transformer to find the right one:

#### Transformer W:
- Primary winding: 80 coils
- Secondary winding: 20 coils

The voltage transformation formula:
[tex]\[ V_s = V_p \times \frac{N_s}{N_p} \][/tex]
[tex]\[ V_s = 20 \, \text{V} \times \frac{20}{80} = 20 \, \text{V} \times \frac{1}{4} = 5 \, \text{V} \][/tex]

This does not give us the desired [tex]\( 4 \, \text{V} \)[/tex].

#### Transformer X:
- Primary winding: 60 coils
- Secondary winding: 12 coils

Using the formula:
[tex]\[ V_s = V_p \times \frac{N_s}{N_p} \][/tex]
[tex]\[ V_s = 20 \, \text{V} \times \frac{12}{60} = 20 \, \text{V} \times \frac{1}{5} = 4 \, \text{V} \][/tex]

This gives us the exact desired [tex]\( 4 \, \text{V} \)[/tex].

#### Transformer Y:
- Primary winding: 70 coils
- Secondary winding: 35 coils

Using the formula:
[tex]\[ V_s = V_p \times \frac{N_s}{N_p} \][/tex]
[tex]\[ V_s = 20 \, \text{V} \times \frac{35}{70} = 20 \, \text{V} \times \frac{1}{2} = 10 \, \text{V} \][/tex]

This does not give us the desired [tex]\( 4 \, \text{V} \)[/tex].

#### Transformer Z:
- Primary winding: 50 coils
- Secondary winding: 5 coils

Using the formula:
[tex]\[ V_s = V_p \times \frac{N_s}{N_p} \][/tex]
[tex]\[ V_s = 20 \, \text{V} \times \frac{5}{50} = 20 \, \text{V} \times \frac{1}{10} = 2 \, \text{V} \][/tex]

This does not give us the desired [tex]\( 4 \, \text{V} \)[/tex].

### Conclusion

From the calculations, we see that Transformer X is the one that achieves the ending voltage of [tex]\( 4 \, \text{V} \)[/tex]. Therefore, Roberto should use transformer [tex]\( \boxed{X} \)[/tex].