Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve this problem, we're given that Car A drives 14 miles along Main Street to get to Oak Street, and we need to determine how far Car B must travel on First Street to get to Oak Street. Given the tangent of the angle [tex]\(y\)[/tex] as [tex]\(\tan(y^\circ) = \frac{5}{7}\)[/tex], we can derive the required distance step by step.
1. Identify the Angle [tex]\( y \)[/tex]:
- We know that [tex]\(\tan(y^\circ) = \frac{5}{7}\)[/tex]. Using this information, we can find the actual value of the angle [tex]\(y\)[/tex] in degrees using the arctangent function. This results in an angle approximately equal to 35.54 degrees.
2. Use the Tangent Function to Find Distance:
- The tangent of an angle in a right-angled triangle is defined as the ratio of the opposite side to the adjacent side.
- In our case:
[tex]\[ \tan(y) = \frac{\text{distance traveled by Car A}}{\text{distance traveled by Car B}} \][/tex]
3. Plug in the Known Values:
- We know that [tex]\(\tan(35.54^\circ) = \frac{5}{7}\)[/tex], Car A's distance (adjacent side) = 14 miles.
- Therefore, the distance [tex]\(d\)[/tex] that Car B must travel (opposite side) can be found by rearranging the equation for tangent:
[tex]\[ \frac{5}{7} = \frac{14}{d} \][/tex]
- Solving for [tex]\(d\)[/tex]:
[tex]\[ d = \frac{7 \times 14}{5} = 19.6 \text{ miles} \][/tex]
Hence, Car B needs to travel approximately 19.6 miles along First Street to reach Oak Street. Therefore, the correct answer is:
Answer: 19.6 miles
1. Identify the Angle [tex]\( y \)[/tex]:
- We know that [tex]\(\tan(y^\circ) = \frac{5}{7}\)[/tex]. Using this information, we can find the actual value of the angle [tex]\(y\)[/tex] in degrees using the arctangent function. This results in an angle approximately equal to 35.54 degrees.
2. Use the Tangent Function to Find Distance:
- The tangent of an angle in a right-angled triangle is defined as the ratio of the opposite side to the adjacent side.
- In our case:
[tex]\[ \tan(y) = \frac{\text{distance traveled by Car A}}{\text{distance traveled by Car B}} \][/tex]
3. Plug in the Known Values:
- We know that [tex]\(\tan(35.54^\circ) = \frac{5}{7}\)[/tex], Car A's distance (adjacent side) = 14 miles.
- Therefore, the distance [tex]\(d\)[/tex] that Car B must travel (opposite side) can be found by rearranging the equation for tangent:
[tex]\[ \frac{5}{7} = \frac{14}{d} \][/tex]
- Solving for [tex]\(d\)[/tex]:
[tex]\[ d = \frac{7 \times 14}{5} = 19.6 \text{ miles} \][/tex]
Hence, Car B needs to travel approximately 19.6 miles along First Street to reach Oak Street. Therefore, the correct answer is:
Answer: 19.6 miles
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.