Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Ask your questions and receive precise answers from experienced professionals across different disciplines. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve this problem, we're given that Car A drives 14 miles along Main Street to get to Oak Street, and we need to determine how far Car B must travel on First Street to get to Oak Street. Given the tangent of the angle [tex]\(y\)[/tex] as [tex]\(\tan(y^\circ) = \frac{5}{7}\)[/tex], we can derive the required distance step by step.
1. Identify the Angle [tex]\( y \)[/tex]:
- We know that [tex]\(\tan(y^\circ) = \frac{5}{7}\)[/tex]. Using this information, we can find the actual value of the angle [tex]\(y\)[/tex] in degrees using the arctangent function. This results in an angle approximately equal to 35.54 degrees.
2. Use the Tangent Function to Find Distance:
- The tangent of an angle in a right-angled triangle is defined as the ratio of the opposite side to the adjacent side.
- In our case:
[tex]\[ \tan(y) = \frac{\text{distance traveled by Car A}}{\text{distance traveled by Car B}} \][/tex]
3. Plug in the Known Values:
- We know that [tex]\(\tan(35.54^\circ) = \frac{5}{7}\)[/tex], Car A's distance (adjacent side) = 14 miles.
- Therefore, the distance [tex]\(d\)[/tex] that Car B must travel (opposite side) can be found by rearranging the equation for tangent:
[tex]\[ \frac{5}{7} = \frac{14}{d} \][/tex]
- Solving for [tex]\(d\)[/tex]:
[tex]\[ d = \frac{7 \times 14}{5} = 19.6 \text{ miles} \][/tex]
Hence, Car B needs to travel approximately 19.6 miles along First Street to reach Oak Street. Therefore, the correct answer is:
Answer: 19.6 miles
1. Identify the Angle [tex]\( y \)[/tex]:
- We know that [tex]\(\tan(y^\circ) = \frac{5}{7}\)[/tex]. Using this information, we can find the actual value of the angle [tex]\(y\)[/tex] in degrees using the arctangent function. This results in an angle approximately equal to 35.54 degrees.
2. Use the Tangent Function to Find Distance:
- The tangent of an angle in a right-angled triangle is defined as the ratio of the opposite side to the adjacent side.
- In our case:
[tex]\[ \tan(y) = \frac{\text{distance traveled by Car A}}{\text{distance traveled by Car B}} \][/tex]
3. Plug in the Known Values:
- We know that [tex]\(\tan(35.54^\circ) = \frac{5}{7}\)[/tex], Car A's distance (adjacent side) = 14 miles.
- Therefore, the distance [tex]\(d\)[/tex] that Car B must travel (opposite side) can be found by rearranging the equation for tangent:
[tex]\[ \frac{5}{7} = \frac{14}{d} \][/tex]
- Solving for [tex]\(d\)[/tex]:
[tex]\[ d = \frac{7 \times 14}{5} = 19.6 \text{ miles} \][/tex]
Hence, Car B needs to travel approximately 19.6 miles along First Street to reach Oak Street. Therefore, the correct answer is:
Answer: 19.6 miles
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.