Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve for the radius and the center of the circle given the equation [tex]\( x^2 + (y - 10)^2 = 16 \)[/tex], follow these steps:
1. Identify the standard form of a circle's equation:
The standard form of a circle's equation is [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex], where [tex]\( (h, k) \)[/tex] is the center and [tex]\( r \)[/tex] is the radius.
2. Compare the given equation to the standard form:
The given equation is [tex]\( x^2 + (y - 10)^2 = 16 \)[/tex].
3. Identify the center:
- By comparing [tex]\( x^2 \)[/tex] with [tex]\( (x - h)^2 \)[/tex], we see that [tex]\( h = 0 \)[/tex].
- By comparing [tex]\( (y - 10)^2 \)[/tex] with [tex]\( (y - k)^2 \)[/tex], we see that [tex]\( k = 10 \)[/tex].
Therefore, the center of the circle is at [tex]\( (0, 10) \)[/tex].
4. Determine the radius:
- The right side of the equation is [tex]\( 16 \)[/tex], which in the standard form represents [tex]\( r^2 \)[/tex].
- Solving for [tex]\( r \)[/tex], we take the square root of both sides: [tex]\( r = \sqrt{16} = 4 \)[/tex].
Hence, the radius of the circle is [tex]\( 4 \)[/tex] units and the center of the circle is at [tex]\( (0, 10) \)[/tex].
1. Identify the standard form of a circle's equation:
The standard form of a circle's equation is [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex], where [tex]\( (h, k) \)[/tex] is the center and [tex]\( r \)[/tex] is the radius.
2. Compare the given equation to the standard form:
The given equation is [tex]\( x^2 + (y - 10)^2 = 16 \)[/tex].
3. Identify the center:
- By comparing [tex]\( x^2 \)[/tex] with [tex]\( (x - h)^2 \)[/tex], we see that [tex]\( h = 0 \)[/tex].
- By comparing [tex]\( (y - 10)^2 \)[/tex] with [tex]\( (y - k)^2 \)[/tex], we see that [tex]\( k = 10 \)[/tex].
Therefore, the center of the circle is at [tex]\( (0, 10) \)[/tex].
4. Determine the radius:
- The right side of the equation is [tex]\( 16 \)[/tex], which in the standard form represents [tex]\( r^2 \)[/tex].
- Solving for [tex]\( r \)[/tex], we take the square root of both sides: [tex]\( r = \sqrt{16} = 4 \)[/tex].
Hence, the radius of the circle is [tex]\( 4 \)[/tex] units and the center of the circle is at [tex]\( (0, 10) \)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.