Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve for the radius and the center of the circle given the equation [tex]\( x^2 + (y - 10)^2 = 16 \)[/tex], follow these steps:
1. Identify the standard form of a circle's equation:
The standard form of a circle's equation is [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex], where [tex]\( (h, k) \)[/tex] is the center and [tex]\( r \)[/tex] is the radius.
2. Compare the given equation to the standard form:
The given equation is [tex]\( x^2 + (y - 10)^2 = 16 \)[/tex].
3. Identify the center:
- By comparing [tex]\( x^2 \)[/tex] with [tex]\( (x - h)^2 \)[/tex], we see that [tex]\( h = 0 \)[/tex].
- By comparing [tex]\( (y - 10)^2 \)[/tex] with [tex]\( (y - k)^2 \)[/tex], we see that [tex]\( k = 10 \)[/tex].
Therefore, the center of the circle is at [tex]\( (0, 10) \)[/tex].
4. Determine the radius:
- The right side of the equation is [tex]\( 16 \)[/tex], which in the standard form represents [tex]\( r^2 \)[/tex].
- Solving for [tex]\( r \)[/tex], we take the square root of both sides: [tex]\( r = \sqrt{16} = 4 \)[/tex].
Hence, the radius of the circle is [tex]\( 4 \)[/tex] units and the center of the circle is at [tex]\( (0, 10) \)[/tex].
1. Identify the standard form of a circle's equation:
The standard form of a circle's equation is [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex], where [tex]\( (h, k) \)[/tex] is the center and [tex]\( r \)[/tex] is the radius.
2. Compare the given equation to the standard form:
The given equation is [tex]\( x^2 + (y - 10)^2 = 16 \)[/tex].
3. Identify the center:
- By comparing [tex]\( x^2 \)[/tex] with [tex]\( (x - h)^2 \)[/tex], we see that [tex]\( h = 0 \)[/tex].
- By comparing [tex]\( (y - 10)^2 \)[/tex] with [tex]\( (y - k)^2 \)[/tex], we see that [tex]\( k = 10 \)[/tex].
Therefore, the center of the circle is at [tex]\( (0, 10) \)[/tex].
4. Determine the radius:
- The right side of the equation is [tex]\( 16 \)[/tex], which in the standard form represents [tex]\( r^2 \)[/tex].
- Solving for [tex]\( r \)[/tex], we take the square root of both sides: [tex]\( r = \sqrt{16} = 4 \)[/tex].
Hence, the radius of the circle is [tex]\( 4 \)[/tex] units and the center of the circle is at [tex]\( (0, 10) \)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.