Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the nature of the roots for the quadratic equation [tex]\(5x^2 + 3x = -8\)[/tex], we first rewrite it in the standard form [tex]\(ax^2 + bx + c = 0\)[/tex].
1. Rewrite the equation:
[tex]\[5x^2 + 3x + 8 = 0\][/tex]
2. Identify the coefficients:
[tex]\[a = 5\][/tex]
[tex]\[b = 3\][/tex]
[tex]\[c = 8\][/tex]
3. Calculate the discriminant [tex]\(\Delta\)[/tex]. The discriminant of a quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex] is given by the formula:
[tex]\[\Delta = b^2 - 4ac\][/tex]
Substituting the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex]:
[tex]\[\Delta = 3^2 - 4 \cdot 5 \cdot 8\][/tex]
[tex]\[\Delta = 9 - 160\][/tex]
[tex]\[\Delta = -151\][/tex]
4. Determine the nature of the roots based on the discriminant:
- If [tex]\(\Delta > 0\)[/tex], the roots are real and different.
- If [tex]\(\Delta = 0\)[/tex], the roots are real and equal.
- If [tex]\(\Delta < 0\)[/tex], the roots are imaginary.
Since [tex]\(\Delta = -151\)[/tex] and [tex]\(\Delta < 0\)[/tex], the roots of the quadratic equation [tex]\(5x^2 + 3x + 8 = 0\)[/tex] are imaginary.
Thus, the nature of the roots of [tex]\(5 x^2 + 3 x = -8\)[/tex] is:
Imaginary roots.
1. Rewrite the equation:
[tex]\[5x^2 + 3x + 8 = 0\][/tex]
2. Identify the coefficients:
[tex]\[a = 5\][/tex]
[tex]\[b = 3\][/tex]
[tex]\[c = 8\][/tex]
3. Calculate the discriminant [tex]\(\Delta\)[/tex]. The discriminant of a quadratic equation [tex]\(ax^2 + bx + c = 0\)[/tex] is given by the formula:
[tex]\[\Delta = b^2 - 4ac\][/tex]
Substituting the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex]:
[tex]\[\Delta = 3^2 - 4 \cdot 5 \cdot 8\][/tex]
[tex]\[\Delta = 9 - 160\][/tex]
[tex]\[\Delta = -151\][/tex]
4. Determine the nature of the roots based on the discriminant:
- If [tex]\(\Delta > 0\)[/tex], the roots are real and different.
- If [tex]\(\Delta = 0\)[/tex], the roots are real and equal.
- If [tex]\(\Delta < 0\)[/tex], the roots are imaginary.
Since [tex]\(\Delta = -151\)[/tex] and [tex]\(\Delta < 0\)[/tex], the roots of the quadratic equation [tex]\(5x^2 + 3x + 8 = 0\)[/tex] are imaginary.
Thus, the nature of the roots of [tex]\(5 x^2 + 3 x = -8\)[/tex] is:
Imaginary roots.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.