Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

What is the equation of the line that is perpendicular to the given line and has an [tex][tex]$x$[/tex][/tex]-intercept of 6?

Given line: [tex][tex]$y=-\frac{3}{4} x+8$[/tex][/tex]

Options:
A. [tex][tex]$y=-\frac{3}{4} x+6$[/tex][/tex]
B. [tex][tex]$y=\frac{4}{3} x-8$[/tex][/tex]
C. [tex][tex]$y=\frac{4}{3} x-6$[/tex][/tex]


Sagot :

To find the equation of the line that is perpendicular to a given line and has a specified [tex]\( x \)[/tex]-intercept, follow these steps:

1. Identify the slope of the given line:
The given line is [tex]\( y = -\frac{3}{4}x + 6 \)[/tex].
The slope of this line is [tex]\( -\frac{3}{4} \)[/tex].

2. Find the slope of the perpendicular line:
Lines that are perpendicular to each other have slopes that are negative reciprocals.
Therefore, if the slope of the given line is [tex]\( -\frac{3}{4} \)[/tex], the slope [tex]\( m \)[/tex] of the perpendicular line will be:
[tex]\[ m = -\frac{1}{-\frac{3}{4}} = \frac{4}{3} \][/tex]

3. Determine the equation of the perpendicular line:
We need a line with the slope [tex]\( \frac{4}{3} \)[/tex] and an [tex]\( x \)[/tex]-intercept of 6.

The general form of the equation of a line is:
[tex]\[ y = mx + b \][/tex]
where [tex]\( m \)[/tex] is the slope and [tex]\( b \)[/tex] is the [tex]\( y \)[/tex]-intercept.

Since the [tex]\( x \)[/tex]-intercept is 6, at [tex]\( x = 6 \)[/tex], [tex]\( y = 0 \)[/tex]. Substituting these values into the equation:
[tex]\[ 0 = \frac{4}{3} \cdot 6 + b \][/tex]

4. Solve for the [tex]\( y \)[/tex]-intercept [tex]\( b \)[/tex]:
[tex]\[ 0 = \frac{4}{3} \cdot 6 + b \][/tex]
[tex]\[ 0 = 8 + b \][/tex]
[tex]\[ b = -8 \][/tex]

5. Write the final equation:
Substituting the slope [tex]\( \frac{4}{3} \)[/tex] and the [tex]\( y \)[/tex]-intercept [tex]\( -8 \)[/tex] back into the equation of the line, we get:
[tex]\[ y = \frac{4}{3}x - 8 \][/tex]

Therefore, the equation of the line that is perpendicular to the given line and has an [tex]\( x \)[/tex]-intercept of 6 is:
[tex]\[ y = \frac{4}{3}x - 8 \][/tex]

The correct answer is:
[tex]\[ y = \frac{4}{3}x - 8 \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.