Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Let's start with the given equation:
[tex]\[ 10b = 5(\sqrt{c} + 2) \][/tex]
We will solve for [tex]\( c \)[/tex] step-by-step.
Step 1: Isolate the term involving [tex]\( c \)[/tex]
Divide both sides by 5 to simplify:
[tex]\[ \frac{10b}{5} = \sqrt{c} + 2 \][/tex]
[tex]\[ 2b = \sqrt{c} + 2 \][/tex]
Step 2: Isolate the square root of [tex]\( c \)[/tex]
Subtract 2 from both sides:
[tex]\[ 2b - 2 = \sqrt{c} \][/tex]
Step 3: Square both sides to eliminate the square root
[tex]\[ (2b - 2)^2 = c \][/tex]
We have found:
[tex]\[ c = (2b - 2)^2 \][/tex]
To find an equivalent form of this equation, we can express it in various ways and check which matches one of the options provided.
Option 1: [tex]\( c = 10b - 10 - 5 \)[/tex]
This does not match our derived form because subtracting linear terms doesn't relate to squaring the expression.
Option 2: [tex]\( c = (10b - 10 - 5)^2 \)[/tex]
Simplifying inside the parentheses:
[tex]\[ 10b - 10 - 5 = 10b - 15 \][/tex]
Squaring it:
[tex]\[ c = (10b - 15)^2 \][/tex]
This form does not match [tex]\( c = (2b - 2)^2 \)[/tex].
Option 3: [tex]\( c = \frac{(10b - 2)^2}{25} \)[/tex]
Simplifying,
[tex]\[ (10b - 2)^2 = 100b^2 - 40b + 4 \][/tex]
Divide by 25:
[tex]\[ c = \frac{100b^2 - 40b + 4}{25} = 4b^2 - \frac{8b}{5} + \frac{4}{25} \][/tex]
This form does not match [tex]\( c = (2b - 2)^2 \)[/tex].
Option 4: [tex]\( c = \frac{(10b - 10)^2}{25} \)[/tex]
Simplifying inside the parentheses:
[tex]\[ 10b - 10 = 10(b - 1) \][/tex]
Squaring it:
[tex]\[ (10(b - 1))^2 = 100(b - 1)^2 \][/tex]
Divide by 25:
[tex]\[ c = \frac{100(b - 1)^2}{25} = 4(b - 1)^2 \][/tex]
Since [tex]\( 4(b - 1)^2 = (2b - 2)^2 \)[/tex],
[tex]\[ c = 4(b - 1)^2 \][/tex]
This form matches our original equation.
Therefore, the correct equivalent equation is:
[tex]\[ c = \frac{(10b - 10)^2}{25} \][/tex]
[tex]\[ 10b = 5(\sqrt{c} + 2) \][/tex]
We will solve for [tex]\( c \)[/tex] step-by-step.
Step 1: Isolate the term involving [tex]\( c \)[/tex]
Divide both sides by 5 to simplify:
[tex]\[ \frac{10b}{5} = \sqrt{c} + 2 \][/tex]
[tex]\[ 2b = \sqrt{c} + 2 \][/tex]
Step 2: Isolate the square root of [tex]\( c \)[/tex]
Subtract 2 from both sides:
[tex]\[ 2b - 2 = \sqrt{c} \][/tex]
Step 3: Square both sides to eliminate the square root
[tex]\[ (2b - 2)^2 = c \][/tex]
We have found:
[tex]\[ c = (2b - 2)^2 \][/tex]
To find an equivalent form of this equation, we can express it in various ways and check which matches one of the options provided.
Option 1: [tex]\( c = 10b - 10 - 5 \)[/tex]
This does not match our derived form because subtracting linear terms doesn't relate to squaring the expression.
Option 2: [tex]\( c = (10b - 10 - 5)^2 \)[/tex]
Simplifying inside the parentheses:
[tex]\[ 10b - 10 - 5 = 10b - 15 \][/tex]
Squaring it:
[tex]\[ c = (10b - 15)^2 \][/tex]
This form does not match [tex]\( c = (2b - 2)^2 \)[/tex].
Option 3: [tex]\( c = \frac{(10b - 2)^2}{25} \)[/tex]
Simplifying,
[tex]\[ (10b - 2)^2 = 100b^2 - 40b + 4 \][/tex]
Divide by 25:
[tex]\[ c = \frac{100b^2 - 40b + 4}{25} = 4b^2 - \frac{8b}{5} + \frac{4}{25} \][/tex]
This form does not match [tex]\( c = (2b - 2)^2 \)[/tex].
Option 4: [tex]\( c = \frac{(10b - 10)^2}{25} \)[/tex]
Simplifying inside the parentheses:
[tex]\[ 10b - 10 = 10(b - 1) \][/tex]
Squaring it:
[tex]\[ (10(b - 1))^2 = 100(b - 1)^2 \][/tex]
Divide by 25:
[tex]\[ c = \frac{100(b - 1)^2}{25} = 4(b - 1)^2 \][/tex]
Since [tex]\( 4(b - 1)^2 = (2b - 2)^2 \)[/tex],
[tex]\[ c = 4(b - 1)^2 \][/tex]
This form matches our original equation.
Therefore, the correct equivalent equation is:
[tex]\[ c = \frac{(10b - 10)^2}{25} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.