Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the equations representing the line that is parallel to [tex]\(3x - 4y = 7\)[/tex] and passes through the point [tex]\((-4, -2)\)[/tex], we need to follow these steps:
1. Find the slope of the given line:
- The standard form of the line is [tex]\(3x - 4y = 7\)[/tex].
- Convert it to the slope-intercept form [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope.
[tex]\[ 3x - 4y = 7 \implies -4y = -3x + 7 \implies y = \frac{3}{4}x - \frac{7}{4} \][/tex]
- The slope [tex]\(m\)[/tex] of the line is [tex]\(\frac{3}{4}\)[/tex].
2. Determine the slope of the parallel line:
- Lines that are parallel have the same slope.
- Therefore, the slope of the line parallel to [tex]\(3x - 4y = 7\)[/tex] is also [tex]\(\frac{3}{4}\)[/tex].
3. Use the point-slope form to find the equation of the parallel line:
- We know the slope [tex]\(m = \frac{3}{4}\)[/tex] and the line passes through the point [tex]\((-4, -2)\)[/tex].
- The point-slope form of a line equation is [tex]\(y - y_1 = m(x - x_1)\)[/tex], where [tex]\((x_1, y_1)\)[/tex] is a point on the line.
[tex]\[ y - (-2) = \frac{3}{4}(x - (-4)) \implies y + 2 = \frac{3}{4}(x + 4) \][/tex]
4. Simplify and identify valid forms:
- The point-slope form directly gives us one of the options:
[tex]\[ y + 2 = \frac{3}{4}(x + 4) \][/tex]
- Convert it to slope-intercept form:
[tex]\[ y + 2 = \frac{3}{4}x + 3 \implies y = \frac{3}{4}x + 1 \][/tex]
Now we compare these forms with the given options:
1. [tex]\(y = -\frac{3}{4}x + 1\)[/tex] (incorrect, wrong slope)
2. [tex]\(3x - 4y = -4\)[/tex] (correct, converting [tex]\(y = \frac{3}{4}x + 1\)[/tex] back to standard form):
[tex]\[ y = \frac{3}{4}x + 1 \implies 4y = 3x + 4 \implies 3x - 4y = -4 \][/tex]
3. [tex]\(4x - 3y = -3\)[/tex] (incorrect, wrong slope)
4. [tex]\(y - 2 = -\frac{3}{4}(x - 4)\)[/tex] (incorrect, wrong slope)
5. [tex]\(y + 2 = \frac{3}{4}(x + 4)\)[/tex] (correct, direct match from point-slope form)
The correct options are:
- [tex]\(3x - 4y = -4\)[/tex]
- [tex]\(y + 2 = \frac{3}{4}(x + 4)\)[/tex]
1. Find the slope of the given line:
- The standard form of the line is [tex]\(3x - 4y = 7\)[/tex].
- Convert it to the slope-intercept form [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope.
[tex]\[ 3x - 4y = 7 \implies -4y = -3x + 7 \implies y = \frac{3}{4}x - \frac{7}{4} \][/tex]
- The slope [tex]\(m\)[/tex] of the line is [tex]\(\frac{3}{4}\)[/tex].
2. Determine the slope of the parallel line:
- Lines that are parallel have the same slope.
- Therefore, the slope of the line parallel to [tex]\(3x - 4y = 7\)[/tex] is also [tex]\(\frac{3}{4}\)[/tex].
3. Use the point-slope form to find the equation of the parallel line:
- We know the slope [tex]\(m = \frac{3}{4}\)[/tex] and the line passes through the point [tex]\((-4, -2)\)[/tex].
- The point-slope form of a line equation is [tex]\(y - y_1 = m(x - x_1)\)[/tex], where [tex]\((x_1, y_1)\)[/tex] is a point on the line.
[tex]\[ y - (-2) = \frac{3}{4}(x - (-4)) \implies y + 2 = \frac{3}{4}(x + 4) \][/tex]
4. Simplify and identify valid forms:
- The point-slope form directly gives us one of the options:
[tex]\[ y + 2 = \frac{3}{4}(x + 4) \][/tex]
- Convert it to slope-intercept form:
[tex]\[ y + 2 = \frac{3}{4}x + 3 \implies y = \frac{3}{4}x + 1 \][/tex]
Now we compare these forms with the given options:
1. [tex]\(y = -\frac{3}{4}x + 1\)[/tex] (incorrect, wrong slope)
2. [tex]\(3x - 4y = -4\)[/tex] (correct, converting [tex]\(y = \frac{3}{4}x + 1\)[/tex] back to standard form):
[tex]\[ y = \frac{3}{4}x + 1 \implies 4y = 3x + 4 \implies 3x - 4y = -4 \][/tex]
3. [tex]\(4x - 3y = -3\)[/tex] (incorrect, wrong slope)
4. [tex]\(y - 2 = -\frac{3}{4}(x - 4)\)[/tex] (incorrect, wrong slope)
5. [tex]\(y + 2 = \frac{3}{4}(x + 4)\)[/tex] (correct, direct match from point-slope form)
The correct options are:
- [tex]\(3x - 4y = -4\)[/tex]
- [tex]\(y + 2 = \frac{3}{4}(x + 4)\)[/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.