Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To divide the given rational expressions, follow these steps:
1. Rewrite the Division as Multiplication:
When dividing two rational expressions, you can multiply by the reciprocal of the second expression:
[tex]\[ \frac{\left(\frac{3 x + 8}{x^2 + 2 x - 15}\right)}{\left(\frac{3 x^2 - x - 24}{2 x^2 + 15 x + 25}\right)} = \frac{3 x + 8}{x^2 + 2 x - 15} \times \frac{2 x^2 + 15 x + 25}{3 x^2 - x - 24} \][/tex]
2. Factor the Denominators if Possible:
[tex]\[ x^2 + 2 x - 15 = (x + 5)(x - 3) \][/tex]
[tex]\[ 2 x^2 + 15 x + 25 = (2 x + 5)(x + 5) \][/tex]
3. Replace Factored Expressions:
Substitute the factored forms into the expression:
[tex]\[ \frac{3 x + 8}{(x + 5)(x - 3)} \times \frac{(2 x + 5)(x + 5)}{3 x^2 - x - 24} \][/tex]
4. Factor Numerator and Denominator if Possible:
Let’s assume [tex]\(3 x^2 - x - 24\)[/tex] can be factored:
[tex]\[ 3 x^2 - x - 24 = (3 x + 8)(x - 3) \][/tex]
5. Substitute back into the expression:
[tex]\[ \frac{3 x + 8}{(x + 5)(x - 3)} \times \frac{(2 x + 5)(x + 5)}{(3 x + 8)(x - 3)} \][/tex]
6. Cancel Common Factors:
Cancel out the common factors [tex]\((3 x + 8)\)[/tex], [tex]\((x + 5)\)[/tex], and [tex]\((x - 3)\)[/tex] from the numerator and the denominator:
[tex]\[ \frac{(2 x + 5)}{(x - 3)} \][/tex]
8. Simplified Result:
The final result of the division is:
[tex]\[ \frac{2 x + 5}{x^2 - 6x + 9} \][/tex]
Therefore, the completely simplified rational expression is:
[tex]\[ \boxed{\frac{2 x + 5}{x^2 - 6 x + 9}} \][/tex]
1. Rewrite the Division as Multiplication:
When dividing two rational expressions, you can multiply by the reciprocal of the second expression:
[tex]\[ \frac{\left(\frac{3 x + 8}{x^2 + 2 x - 15}\right)}{\left(\frac{3 x^2 - x - 24}{2 x^2 + 15 x + 25}\right)} = \frac{3 x + 8}{x^2 + 2 x - 15} \times \frac{2 x^2 + 15 x + 25}{3 x^2 - x - 24} \][/tex]
2. Factor the Denominators if Possible:
[tex]\[ x^2 + 2 x - 15 = (x + 5)(x - 3) \][/tex]
[tex]\[ 2 x^2 + 15 x + 25 = (2 x + 5)(x + 5) \][/tex]
3. Replace Factored Expressions:
Substitute the factored forms into the expression:
[tex]\[ \frac{3 x + 8}{(x + 5)(x - 3)} \times \frac{(2 x + 5)(x + 5)}{3 x^2 - x - 24} \][/tex]
4. Factor Numerator and Denominator if Possible:
Let’s assume [tex]\(3 x^2 - x - 24\)[/tex] can be factored:
[tex]\[ 3 x^2 - x - 24 = (3 x + 8)(x - 3) \][/tex]
5. Substitute back into the expression:
[tex]\[ \frac{3 x + 8}{(x + 5)(x - 3)} \times \frac{(2 x + 5)(x + 5)}{(3 x + 8)(x - 3)} \][/tex]
6. Cancel Common Factors:
Cancel out the common factors [tex]\((3 x + 8)\)[/tex], [tex]\((x + 5)\)[/tex], and [tex]\((x - 3)\)[/tex] from the numerator and the denominator:
[tex]\[ \frac{(2 x + 5)}{(x - 3)} \][/tex]
8. Simplified Result:
The final result of the division is:
[tex]\[ \frac{2 x + 5}{x^2 - 6x + 9} \][/tex]
Therefore, the completely simplified rational expression is:
[tex]\[ \boxed{\frac{2 x + 5}{x^2 - 6 x + 9}} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.