Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Divide.

Enter your answer as a single completely simplified rational expression with nonnegative exponents.

[tex]\[ \frac{3z^2}{z^2 - 6z} \div \frac{6z^2 - 42z}{z^2 - 10z + 21} \][/tex]


Sagot :

To solve the given problem:
[tex]\[ \frac{3 z^2}{z^2-6 z} \div \frac{6 z^2-42 z}{z^2-10 z+21}, \][/tex]
we will follow these steps:

1. Rewrite the division as a multiplication by the reciprocal:
[tex]\[ \frac{3 z^2}{z^2-6 z} \cdot \frac{z^2-10 z+21}{6 z^2-42 z}. \][/tex]

2. Factor the expressions wherever possible:

For the first denominator [tex]\(z^2 - 6z\)[/tex], factor out a [tex]\(z\)[/tex]:
[tex]\[ z^2 - 6z = z(z-6). \][/tex]

For the second numerator [tex]\(z^2 - 10z + 21\)[/tex], factor it into two binomials:
[tex]\[ z^2 - 10z + 21 = (z-3)(z-7). \][/tex]

For the second denominator [tex]\(6z^2 - 42z\)[/tex], factor out the greatest common factor (GCF), which is [tex]\(6z\)[/tex]:
[tex]\[ 6z^2 - 42z = 6z(z-7). \][/tex]

Now, substitute these factored forms back into the expression:
[tex]\[ \frac{3z^2}{z(z-6)} \cdot \frac{(z-3)(z-7)}{6z(z-7)}. \][/tex]

3. Simplify the expression:

Cancel out common factors in the numerator and the denominator. Specifically, [tex]\(z\)[/tex] and [tex]\(z-7\)[/tex] appear in both the numerators and denominators, so they can be canceled:
[tex]\[ \frac{3z^2}{z(z-6)} \cdot \frac{(z-3)(z-7)}{6z(z-7)} = \frac{3z \cdot z}{z \cdot (z-6)} \cdot \frac{(z-3)}{6z}. \][/tex]

[tex]\[ = \frac{3 \cdot z \cdot (z-3)}{6z(z-6)}. \][/tex]

Next, cancel [tex]\(3z\)[/tex] from the numerator and the denominator:
[tex]\[ = \frac{(z-3)}{2(z-6)}. \][/tex]

4. Result:

The final simplified expression is:
[tex]\[ \frac{(z-3)}{2(z-6)}. \][/tex]

This is the completely simplified rational expression for the given problem.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.