Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve the given problem:
[tex]\[ \frac{3 z^2}{z^2-6 z} \div \frac{6 z^2-42 z}{z^2-10 z+21}, \][/tex]
we will follow these steps:
1. Rewrite the division as a multiplication by the reciprocal:
[tex]\[ \frac{3 z^2}{z^2-6 z} \cdot \frac{z^2-10 z+21}{6 z^2-42 z}. \][/tex]
2. Factor the expressions wherever possible:
For the first denominator [tex]\(z^2 - 6z\)[/tex], factor out a [tex]\(z\)[/tex]:
[tex]\[ z^2 - 6z = z(z-6). \][/tex]
For the second numerator [tex]\(z^2 - 10z + 21\)[/tex], factor it into two binomials:
[tex]\[ z^2 - 10z + 21 = (z-3)(z-7). \][/tex]
For the second denominator [tex]\(6z^2 - 42z\)[/tex], factor out the greatest common factor (GCF), which is [tex]\(6z\)[/tex]:
[tex]\[ 6z^2 - 42z = 6z(z-7). \][/tex]
Now, substitute these factored forms back into the expression:
[tex]\[ \frac{3z^2}{z(z-6)} \cdot \frac{(z-3)(z-7)}{6z(z-7)}. \][/tex]
3. Simplify the expression:
Cancel out common factors in the numerator and the denominator. Specifically, [tex]\(z\)[/tex] and [tex]\(z-7\)[/tex] appear in both the numerators and denominators, so they can be canceled:
[tex]\[ \frac{3z^2}{z(z-6)} \cdot \frac{(z-3)(z-7)}{6z(z-7)} = \frac{3z \cdot z}{z \cdot (z-6)} \cdot \frac{(z-3)}{6z}. \][/tex]
[tex]\[ = \frac{3 \cdot z \cdot (z-3)}{6z(z-6)}. \][/tex]
Next, cancel [tex]\(3z\)[/tex] from the numerator and the denominator:
[tex]\[ = \frac{(z-3)}{2(z-6)}. \][/tex]
4. Result:
The final simplified expression is:
[tex]\[ \frac{(z-3)}{2(z-6)}. \][/tex]
This is the completely simplified rational expression for the given problem.
[tex]\[ \frac{3 z^2}{z^2-6 z} \div \frac{6 z^2-42 z}{z^2-10 z+21}, \][/tex]
we will follow these steps:
1. Rewrite the division as a multiplication by the reciprocal:
[tex]\[ \frac{3 z^2}{z^2-6 z} \cdot \frac{z^2-10 z+21}{6 z^2-42 z}. \][/tex]
2. Factor the expressions wherever possible:
For the first denominator [tex]\(z^2 - 6z\)[/tex], factor out a [tex]\(z\)[/tex]:
[tex]\[ z^2 - 6z = z(z-6). \][/tex]
For the second numerator [tex]\(z^2 - 10z + 21\)[/tex], factor it into two binomials:
[tex]\[ z^2 - 10z + 21 = (z-3)(z-7). \][/tex]
For the second denominator [tex]\(6z^2 - 42z\)[/tex], factor out the greatest common factor (GCF), which is [tex]\(6z\)[/tex]:
[tex]\[ 6z^2 - 42z = 6z(z-7). \][/tex]
Now, substitute these factored forms back into the expression:
[tex]\[ \frac{3z^2}{z(z-6)} \cdot \frac{(z-3)(z-7)}{6z(z-7)}. \][/tex]
3. Simplify the expression:
Cancel out common factors in the numerator and the denominator. Specifically, [tex]\(z\)[/tex] and [tex]\(z-7\)[/tex] appear in both the numerators and denominators, so they can be canceled:
[tex]\[ \frac{3z^2}{z(z-6)} \cdot \frac{(z-3)(z-7)}{6z(z-7)} = \frac{3z \cdot z}{z \cdot (z-6)} \cdot \frac{(z-3)}{6z}. \][/tex]
[tex]\[ = \frac{3 \cdot z \cdot (z-3)}{6z(z-6)}. \][/tex]
Next, cancel [tex]\(3z\)[/tex] from the numerator and the denominator:
[tex]\[ = \frac{(z-3)}{2(z-6)}. \][/tex]
4. Result:
The final simplified expression is:
[tex]\[ \frac{(z-3)}{2(z-6)}. \][/tex]
This is the completely simplified rational expression for the given problem.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.