At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To solve the problem of adding the fractions [tex]\(\frac{2}{x-4} + \frac{x+7}{x+4}\)[/tex], we need to find a common denominator and then combine the numerators over that common denominator. Here’s the detailed step-by-step process:
1. Identify the Denominators:
The denominators are [tex]\(x - 4\)[/tex] and [tex]\(x + 4\)[/tex].
2. Find the Least Common Denominator (LCD):
Since the denominators [tex]\(x - 4\)[/tex] and [tex]\(x + 4\)[/tex] are relatively prime (they have no common factors other than 1), the least common denominator (LCD) is simply the product of these two factors:
[tex]\[ \text{LCD} = (x - 4)(x + 4) = x^2 - 16 \][/tex]
Here, we use the difference of squares to simplify the denominator: [tex]\((x - 4)(x + 4) = x^2 - 16\)[/tex].
3. Adjust the Numerators:
To add the fractions, we need to adjust each numerator, so they are expressed over the common denominator [tex]\(x^2 - 16\)[/tex].
- For [tex]\(\frac{2}{x-4}\)[/tex], multiply numerator and denominator by [tex]\(x + 4\)[/tex]:
[tex]\[ \frac{2}{x - 4} \times \frac{x + 4}{x + 4} = \frac{2(x + 4)}{(x - 4)(x + 4)} = \frac{2x + 8}{x^2 - 16} \][/tex]
- For [tex]\(\frac{x+7}{x+4}\)[/tex], multiply numerator and denominator by [tex]\(x - 4\)[/tex]:
[tex]\[ \frac{x + 7}{x + 4} \times \frac{x - 4}{x - 4} = \frac{(x + 7)(x - 4)}{(x + 4)(x - 4)} = \frac{x^2 + 7x - 4x - 28}{x^2 - 16} = \frac{x^2 + 3x - 28}{x^2 - 16} \][/tex]
4. Combine the Fractions:
Now that both fractions have a common denominator, we can add the numerators:
[tex]\[ \frac{2x + 8}{x^2 - 16} + \frac{x^2 + 3x - 28}{x^2 - 16} = \frac{(2x + 8) + (x^2 + 3x - 28)}{x^2 - 16} \][/tex]
Combine the terms in the numerator:
[tex]\[ (2x + 8) + (x^2 + 3x - 28) = x^2 + 5x - 20 \][/tex]
So, the combined fraction is:
[tex]\[ \frac{x^2 + 5x - 20}{x^2 - 16} \][/tex]
5. Simplify the Result:
We should check if the numerator and the denominator have any common factors and if the fraction can be simplified further. However, in this case, [tex]\(x^2 + 5x - 20\)[/tex] and [tex]\(x^2 - 16\)[/tex] have no common factors and cannot be simplified further. Thus, the fraction is already in its simplest form.
Therefore, the simplified rational expression for the given fractions [tex]\(\frac{2}{x-4} + \frac{x+7}{x+4}\)[/tex] is:
[tex]\[ \boxed{\frac{x^2 + 5x - 20}{x^2 - 16}} \][/tex]
1. Identify the Denominators:
The denominators are [tex]\(x - 4\)[/tex] and [tex]\(x + 4\)[/tex].
2. Find the Least Common Denominator (LCD):
Since the denominators [tex]\(x - 4\)[/tex] and [tex]\(x + 4\)[/tex] are relatively prime (they have no common factors other than 1), the least common denominator (LCD) is simply the product of these two factors:
[tex]\[ \text{LCD} = (x - 4)(x + 4) = x^2 - 16 \][/tex]
Here, we use the difference of squares to simplify the denominator: [tex]\((x - 4)(x + 4) = x^2 - 16\)[/tex].
3. Adjust the Numerators:
To add the fractions, we need to adjust each numerator, so they are expressed over the common denominator [tex]\(x^2 - 16\)[/tex].
- For [tex]\(\frac{2}{x-4}\)[/tex], multiply numerator and denominator by [tex]\(x + 4\)[/tex]:
[tex]\[ \frac{2}{x - 4} \times \frac{x + 4}{x + 4} = \frac{2(x + 4)}{(x - 4)(x + 4)} = \frac{2x + 8}{x^2 - 16} \][/tex]
- For [tex]\(\frac{x+7}{x+4}\)[/tex], multiply numerator and denominator by [tex]\(x - 4\)[/tex]:
[tex]\[ \frac{x + 7}{x + 4} \times \frac{x - 4}{x - 4} = \frac{(x + 7)(x - 4)}{(x + 4)(x - 4)} = \frac{x^2 + 7x - 4x - 28}{x^2 - 16} = \frac{x^2 + 3x - 28}{x^2 - 16} \][/tex]
4. Combine the Fractions:
Now that both fractions have a common denominator, we can add the numerators:
[tex]\[ \frac{2x + 8}{x^2 - 16} + \frac{x^2 + 3x - 28}{x^2 - 16} = \frac{(2x + 8) + (x^2 + 3x - 28)}{x^2 - 16} \][/tex]
Combine the terms in the numerator:
[tex]\[ (2x + 8) + (x^2 + 3x - 28) = x^2 + 5x - 20 \][/tex]
So, the combined fraction is:
[tex]\[ \frac{x^2 + 5x - 20}{x^2 - 16} \][/tex]
5. Simplify the Result:
We should check if the numerator and the denominator have any common factors and if the fraction can be simplified further. However, in this case, [tex]\(x^2 + 5x - 20\)[/tex] and [tex]\(x^2 - 16\)[/tex] have no common factors and cannot be simplified further. Thus, the fraction is already in its simplest form.
Therefore, the simplified rational expression for the given fractions [tex]\(\frac{2}{x-4} + \frac{x+7}{x+4}\)[/tex] is:
[tex]\[ \boxed{\frac{x^2 + 5x - 20}{x^2 - 16}} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.