Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve the problem of subtracting [tex]\(\frac{18r}{r^2-81} - \frac{9}{r-9}\)[/tex] and expressing the result as a single rational expression, let's follow these steps:
1. Factorize the Denominators:
- The first denominator is [tex]\(r^2 - 81\)[/tex]. Notice that this is a difference of squares:
[tex]\[ r^2 - 81 = (r - 9)(r + 9) \][/tex]
- The second denominator is already in a simple form: [tex]\(r - 9\)[/tex].
2. Rewrite Fractions with a Common Denominator:
- The common denominator for both fractions will be [tex]\((r - 9)(r + 9)\)[/tex]. We need to rewrite the second fraction so that it has this common denominator.
3. Rewrite the Second Fraction:
- For the fraction [tex]\(\frac{9}{r-9}\)[/tex], we can multiply the numerator and denominator by [tex]\((r + 9)\)[/tex] to match the common denominator:
[tex]\[ \frac{9}{r-9} = \frac{9(r + 9)}{(r - 9)(r + 9)} = \frac{9r + 81}{(r - 9)(r + 9)} \][/tex]
4. Combine the Fractions:
- Now that both fractions have the same denominator, we can combine them:
[tex]\[ \frac{18r}{(r - 9)(r + 9)} - \frac{9r + 81}{(r - 9)(r + 9)} \][/tex]
- Since the denominators are the same, we subtract the numerators:
[tex]\[ \frac{18r - (9r + 81)}{(r - 9)(r + 9)} \][/tex]
5. Simplify the Numerator:
- Distribute the negative sign in the numerator:
[tex]\[ 18r - 9r - 81 = 9r - 81 \][/tex]
- So our expression is:
[tex]\[ \frac{9r - 81}{(r - 9)(r + 9)} \][/tex]
6. Factor and Simplify:
- Notice that the numerator [tex]\(9r - 81\)[/tex] can be factored out:
[tex]\[ 9r - 81 = 9(r - 9) \][/tex]
- The expression becomes:
[tex]\[ \frac{9(r - 9)}{(r - 9)(r + 9)} \][/tex]
- Cancel out the common factor of [tex]\(r - 9\)[/tex]:
[tex]\[ \frac{9 \cancel{(r - 9)}}{\cancel{(r - 9)} (r + 9)} = \frac{9}{r + 9} \][/tex]
Therefore, the simplified single rational expression is:
[tex]\[ \boxed{\frac{9}{r + 9}} \][/tex]
1. Factorize the Denominators:
- The first denominator is [tex]\(r^2 - 81\)[/tex]. Notice that this is a difference of squares:
[tex]\[ r^2 - 81 = (r - 9)(r + 9) \][/tex]
- The second denominator is already in a simple form: [tex]\(r - 9\)[/tex].
2. Rewrite Fractions with a Common Denominator:
- The common denominator for both fractions will be [tex]\((r - 9)(r + 9)\)[/tex]. We need to rewrite the second fraction so that it has this common denominator.
3. Rewrite the Second Fraction:
- For the fraction [tex]\(\frac{9}{r-9}\)[/tex], we can multiply the numerator and denominator by [tex]\((r + 9)\)[/tex] to match the common denominator:
[tex]\[ \frac{9}{r-9} = \frac{9(r + 9)}{(r - 9)(r + 9)} = \frac{9r + 81}{(r - 9)(r + 9)} \][/tex]
4. Combine the Fractions:
- Now that both fractions have the same denominator, we can combine them:
[tex]\[ \frac{18r}{(r - 9)(r + 9)} - \frac{9r + 81}{(r - 9)(r + 9)} \][/tex]
- Since the denominators are the same, we subtract the numerators:
[tex]\[ \frac{18r - (9r + 81)}{(r - 9)(r + 9)} \][/tex]
5. Simplify the Numerator:
- Distribute the negative sign in the numerator:
[tex]\[ 18r - 9r - 81 = 9r - 81 \][/tex]
- So our expression is:
[tex]\[ \frac{9r - 81}{(r - 9)(r + 9)} \][/tex]
6. Factor and Simplify:
- Notice that the numerator [tex]\(9r - 81\)[/tex] can be factored out:
[tex]\[ 9r - 81 = 9(r - 9) \][/tex]
- The expression becomes:
[tex]\[ \frac{9(r - 9)}{(r - 9)(r + 9)} \][/tex]
- Cancel out the common factor of [tex]\(r - 9\)[/tex]:
[tex]\[ \frac{9 \cancel{(r - 9)}}{\cancel{(r - 9)} (r + 9)} = \frac{9}{r + 9} \][/tex]
Therefore, the simplified single rational expression is:
[tex]\[ \boxed{\frac{9}{r + 9}} \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.