Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Certainly! Let's go through the steps to subtract the given rational expressions and simplify the result.
We start with the following expressions:
[tex]\[ \frac{3m - 18}{m^2 - 10m + 24} - \frac{m + 8}{4 - m} \][/tex]
Step 1: Simplify the second fraction, if possible
Notice that the denominator [tex]\(4 - m\)[/tex] can be written as [tex]\( -(m - 4)\)[/tex]. Thus, the second fraction becomes:
[tex]\[ \frac{m + 8}{4 - m} = \frac{m + 8}{-(m - 4)} = -\frac{m + 8}{m - 4} \][/tex]
Now, our expression looks like this:
[tex]\[ \frac{3m - 18}{m^2 - 10m + 24} - \left( -\frac{m + 8}{m - 4} \right) \][/tex]
Which simplifies to:
[tex]\[ \frac{3m - 18}{m^2 - 10m + 24} + \frac{m + 8}{m - 4} \][/tex]
Step 2: Factor the denominators, if necessary (factoring the quadratic expression)
The denominator [tex]\(m^2 - 10m + 24\)[/tex] can be factored by looking for factors of 24 that sum up to -10. The correct factors are -6 and -4:
[tex]\[ m^2 - 10m + 24 = (m - 6)(m - 4) \][/tex]
So, our expression is now:
[tex]\[ \frac{3m - 18}{(m - 6)(m - 4)} + \frac{m + 8}{m - 4} \][/tex]
Step 3: Combine the fractions by finding a common denominator
The common denominator in this case is [tex]\((m - 6)(m - 4)\)[/tex]. We need to express [tex]\(\frac{m + 8}{m - 4}\)[/tex] with this common denominator:
[tex]\[ \frac{m + 8}{m - 4} = \frac{(m + 8)(m - 6)}{(m - 6)(m - 4)} \][/tex]
So, now we have:
[tex]\[ \frac{3m - 18}{(m - 6)(m - 4)} + \frac{(m + 8)(m - 6)}{(m - 6)(m - 4)} \][/tex]
Step 4: Add the numerators over the common denominator
The numerators are [tex]\(3m - 18\)[/tex] and [tex]\((m + 8)(m - 6)\)[/tex]. First, expand [tex]\((m + 8)(m - 6)\)[/tex]:
[tex]\[ (m + 8)(m - 6) = m^2 - 6m + 8m - 48 = m^2 + 2m - 48 \][/tex]
Now add the numerators:
[tex]\[ \frac{3m - 18 + (m^2 + 2m - 48)}{(m - 6)(m - 4)} = \frac{m^2 + 2m - 48 + 3m - 18}{(m - 6)(m - 4)} = \frac{m^2 + 5m - 66}{(m - 6)(m - 4)} \][/tex]
Step 5: Simplify the resulting expression if possible
To ensure the simplified expression has no common factors in the numerator and denominator, check if the numerator [tex]\(m^2 + 5m - 66\)[/tex] factors further.
It does not factor any further in a real number field, so the rational expression is completely simplified.
Final Answer:
[tex]\[ \frac{m^2 + 5m - 66}{(m - 6)(m - 4)} \][/tex]
This can be further verified to simplify to [tex]\(\frac{m + 11}{m - 4}\)[/tex] upon performing polynomial long division.
Hence, the final simplified form is:
[tex]\[ \boxed{\frac{m + 11}{m - 4}} \][/tex]
We start with the following expressions:
[tex]\[ \frac{3m - 18}{m^2 - 10m + 24} - \frac{m + 8}{4 - m} \][/tex]
Step 1: Simplify the second fraction, if possible
Notice that the denominator [tex]\(4 - m\)[/tex] can be written as [tex]\( -(m - 4)\)[/tex]. Thus, the second fraction becomes:
[tex]\[ \frac{m + 8}{4 - m} = \frac{m + 8}{-(m - 4)} = -\frac{m + 8}{m - 4} \][/tex]
Now, our expression looks like this:
[tex]\[ \frac{3m - 18}{m^2 - 10m + 24} - \left( -\frac{m + 8}{m - 4} \right) \][/tex]
Which simplifies to:
[tex]\[ \frac{3m - 18}{m^2 - 10m + 24} + \frac{m + 8}{m - 4} \][/tex]
Step 2: Factor the denominators, if necessary (factoring the quadratic expression)
The denominator [tex]\(m^2 - 10m + 24\)[/tex] can be factored by looking for factors of 24 that sum up to -10. The correct factors are -6 and -4:
[tex]\[ m^2 - 10m + 24 = (m - 6)(m - 4) \][/tex]
So, our expression is now:
[tex]\[ \frac{3m - 18}{(m - 6)(m - 4)} + \frac{m + 8}{m - 4} \][/tex]
Step 3: Combine the fractions by finding a common denominator
The common denominator in this case is [tex]\((m - 6)(m - 4)\)[/tex]. We need to express [tex]\(\frac{m + 8}{m - 4}\)[/tex] with this common denominator:
[tex]\[ \frac{m + 8}{m - 4} = \frac{(m + 8)(m - 6)}{(m - 6)(m - 4)} \][/tex]
So, now we have:
[tex]\[ \frac{3m - 18}{(m - 6)(m - 4)} + \frac{(m + 8)(m - 6)}{(m - 6)(m - 4)} \][/tex]
Step 4: Add the numerators over the common denominator
The numerators are [tex]\(3m - 18\)[/tex] and [tex]\((m + 8)(m - 6)\)[/tex]. First, expand [tex]\((m + 8)(m - 6)\)[/tex]:
[tex]\[ (m + 8)(m - 6) = m^2 - 6m + 8m - 48 = m^2 + 2m - 48 \][/tex]
Now add the numerators:
[tex]\[ \frac{3m - 18 + (m^2 + 2m - 48)}{(m - 6)(m - 4)} = \frac{m^2 + 2m - 48 + 3m - 18}{(m - 6)(m - 4)} = \frac{m^2 + 5m - 66}{(m - 6)(m - 4)} \][/tex]
Step 5: Simplify the resulting expression if possible
To ensure the simplified expression has no common factors in the numerator and denominator, check if the numerator [tex]\(m^2 + 5m - 66\)[/tex] factors further.
It does not factor any further in a real number field, so the rational expression is completely simplified.
Final Answer:
[tex]\[ \frac{m^2 + 5m - 66}{(m - 6)(m - 4)} \][/tex]
This can be further verified to simplify to [tex]\(\frac{m + 11}{m - 4}\)[/tex] upon performing polynomial long division.
Hence, the final simplified form is:
[tex]\[ \boxed{\frac{m + 11}{m - 4}} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.